Abstract:
A method is disclosed for regenerating an electrode of a flow battery. The method can be executed during shutdown of the flow battery from an active charge/discharge mode to an inactive, shut-down mode in which neither a negative electrolyte nor a positive electrolyte are circulated through at least one cell of the flow battery. The method includes driving voltage of the least one cell of the flow battery toward zero by converting, in-situ, the negative electrolyte in the at least one cell to a higher oxidation state. The negative electrolyte is in contact with an electrode of the at least one cell. The higher oxidation state negative electrolyte is used to regenerate, in-situ, catalytically active surfaces of the electrode of the at least one cell.
Abstract:
A flow battery includes a cell that has first and second flow fields spaced apart from each other and an electrolyte separator layer. A supply/storage system is external of the cell and includes first and second vessels fluidly connected with the first and second flow fields, and first and second pumps configured to selectively move first and second fluid electrolytes between the vessels and the first and second flow fields. The flow fields each have an electrochemically active zone that is configured to receive flow of the fluid electrolytes. The electrochemically active zone has a total open volume that is a function of at least one of a power parameter of the flow battery, a time parameter of the pumps and a concentration parameter of the fluid electrolytes.
Abstract:
A method is disclosed for regenerating an electrode of a flow battery. The method can be executed during shutdown of the flow battery from an active charge/discharge mode to an inactive, shut-down mode in which neither a negative electrolyte nor a positive electrolyte are circulated through at least one cell of the flow battery. The method includes driving voltage of the least one cell of the flow battery toward zero by converting, in-situ, the negative electrolyte in the at least one cell to a higher oxidation state. The negative electrolyte is in contact with an electrode of the at least one cell. The higher oxidation state negative electrolyte is used to regenerate, in-situ, catalytically active surfaces of the electrode of the at least one cell.
Abstract:
A flow battery includes at least a cell that has a first electrode, a second electrode and an electrolyte separator layer arranged between the electrodes. A supply/storage system is external of the cell and includes a first vessel fluidly connected in a first loop with the first electrode and a second vessel fluidly connected in a second loop with the second electrode. The first loop and the second loop are isolated from each other. The supply/storage system is configured to fluidly connect the first loop and the second loop to move a second liquid electrolyte from the second vessel into a first liquid electrolyte in the first vessel responsive to a half-cell potential at the first electrode being less than a defined threshold half-cell potential.
Abstract:
A flow battery includes a cell that has first and second flow fields spaced apart from each other and an electrolyte separator layer. A supply/storage system is external of the cell and includes first and second vessels fluidly connected with the first and second flow fields, and first and second pumps configured to selectively move first and second fluid electrolytes between the vessels and the first and second flow fields. The flow fields each have an electrochemically active zone that is configured to receive flow of the fluid electrolytes. The electrochemically active zone has a total open volume that is a function of at least one of a power parameter of the flow battery, a time parameter of the pumps and a concentration parameter of the fluid electrolytes.