Abstract:
A gas turbine engine component includes a body with a wall surrounding an interior cavity. The wall has opposed interior and exterior surfaces. The interior surface has a plurality of coolant inlets and the exterior surface has a coolant outlet defined therein. A coolant conduit extends between the coolant inlets and the coolant outlet and is configured and adapted to induce secondary flow vortices in coolant traversing the coolant conduit and in an adherent coolant film over a portion of the exterior surface of component body.
Abstract:
One exemplary embodiment of this disclosure relates to a method of forming an engine component. The method includes forming an engine component having an internal passageway, the internal passageway formed with an initial dimension. The method further includes establishing a flow of machining fluid within the internal passageway, the machining fluid changing the initial dimension.
Abstract:
One exemplary embodiment of this disclosure relates to a method of forming an engine component. The method includes forming an engine component having an internal passageway, the internal passageway formed with an initial dimension. The method further includes establishing a flow of machining fluid within the internal passageway, the machining fluid changing the initial dimension.
Abstract:
A gas turbine engine component is described. The component includes a component wall having an internal surface that is adjacent a flow of coolant and an external surface that is adjacent a flow of gas. The component wall includes a cooling hole that has an inlet defined by the internal surface and an outlet defined by the external surface. The cooling holes also has a metering location having the smallest cross-section area of the cooling hole, an internal diffuser positioned between the inlet and the metering location, an accumulation diverter portion of the internal diffuser and an accumulator portion of the internal diffuser.
Abstract:
A turbine blade according to an example of the present disclosure includes, among other things, a platform, an airfoil tip, and an airfoil section between the platform and the airfoil tip. The airfoil section has a cavity spaced radially from the airfoil tip and a plurality of cooling passages radially between the cavity and the airfoil tip. Each of the plurality of cooling passages defines an exit port adjacent the airfoil tip. An internal feature within each of the plurality of cooling passages is configured to meter flow to the exit port.
Abstract:
One exemplary embodiment of this disclosure relates to a method of forming an engine component. The method includes forming an engine component having an internal passageway, the internal passageway formed with an initial dimension. The method further includes establishing a flow of machining fluid within the internal passageway, the machining fluid changing the initial dimension.
Abstract:
A gas turbine engine component includes a wall that provides an exterior surface and an interior flow path surface. A film cooling hole extends through the wall and is configured to fluidly connect the interior flow path surface to the exterior surface. The film cooling hole has a pocket that faces the interior flow path and extends substantially in a longitudinal direction. The film cooling hole has a portion downstream from the pocket and is arranged at an angle relative to the longitudinal direction and extends to the exterior surface.
Abstract:
A wall of a gas turbine engine is provided. The wall may comprise an external surface adjacent a gas path and an internal surface adjacent an internal flow path. A film hole may have an inlet at the internal surface and an outlet at the external surface. A flow accumulator adjacent the inlet may protrude from the internal surface. A method of making an engine component is also provided and comprises the step of forming a component wall comprising an accumulator on an internal surface and a film hole defined by the component wall. The film hole may include an opening adjacent the accumulator and defined by the internal surface.