Abstract:
Methods and apparatus for monitoring a subject are described. A monitoring device configured to be attached to a body of a subject includes a sensor that is configured to detect and/or measure physiological information from the subject and a motion sensor configured to detect and/or measure subject motion information. The physiological sensor and motion sensor are in communication with a processor that is configured to receive and analyze signals produced by the physiological sensor and motion sensor. The processor is configured to process motion sensor signals to identify an activity characteristic of the subject. Once an activity characteristic is determined, the processor is configured to select a biometric signal extraction algorithm or circuit in response to the activity characteristic of the subject, and then process physiological sensor signals via the biometric signal extraction algorithm or circuit to produce physiological information about the subject.
Abstract:
A wearable biometric monitoring device is configured to assess the biometric signal quality of one or more sensors associated with the monitoring device, determine how the user should adjust the device to improve the biometric fit, and instruct the user to wear the biometric monitoring device a certain way. Communicating instructions to a user may include instructing the user to execute a testing regimen while wearing the biometric monitoring device. The testing regimen facilitates an estimation of a signal quality that can be used to provide feedback to the user that he/she needs to adjust the device to improve the biometric fit and the biometric signal quality.
Abstract:
Wearable apparatus for monitoring various physiological and environmental factors are provided. Real-time, noninvasive health and environmental monitors include a plurality of compact sensors integrated within small, low-profile devices, such as earpiece modules. Physiological and environmental data is collected and wirelessly transmitted into a wireless network, where the data is stored and/or processed.
Abstract:
Methods and apparatus are described for facilitating the extraction of cleaner biometric signals from biometric monitors. A motion reference signal is generated independently from a biometric signal and then the motion reference signal is used to remove motion artifacts from the biometric signal.
Abstract:
An optical adapter is configured to be removably secured to a wearable monitoring device. The monitoring device includes a housing having a portion with a biometric sensor that is wearably positionable adjacent the skin of a subject. The biometric sensor includes an optical emitter and an optical detector. The optical adapter includes a base that is configured to be removably secured to the housing portion. The optical adapter includes a first light guide extending outwardly from the base that is in optical communication with the optical emitter when the base is secured to the housing portion, and a second light guide extending outwardly from the base that is in optical communication with the optical detector when the base is secured to the housing portion. The optical adapter also includes a plurality of stabilizing members extending outwardly from the base.
Abstract:
A monitoring device configured to be attached to a body of a subject includes a sensor configured to detect and/or measure physiological information from the subject, and a processor coupled to the sensor that is configured to receive and analyze signals produced by the sensor. The processor is configured to change signal analysis frequency and/or sensor interrogation power in response to detecting a change in subject activity, a change in subject stress level, a change in environmental conditions, a change in time, and/or a change in location of the subject.
Abstract:
An earbud (300) comprising a speaker driver and a sensor module secured to the speaker driver and electrically connected to the speaker driver, and wherein the sensor module is configured to detect and/or measure physiological information from a subject wearing the earbud. The sensor module may comprise a printed circuit board (PCB; 312) to which are secured an optical source (24) and an optical detector (26), a first light guide (40) coupled to the optical source, a second light guide (42) coupled to the optical detector, wherein the first light guide is configured to deliver light from the optical source into an ear region of the subject via a distal end thereof, and wherein the second light guide is configured to collect light from the ear region via a distal end thereof and deliver collected light to the optical detector.
Abstract:
Apparatus and methods for attenuating environmental interference are described. A wearable monitoring apparatus includes a housing configured to be attached to the body of a subject and a sensor module that includes an energy emitter that directs energy at a target region of the subject, a detector that detects an energy response signal - or physiological condition - from the subject, a filter that removes time-varying environmental interference from the energy response signal, and at least one processor that controls operations of the energy emitter, detector, and filter.