Abstract:
According to some aspects, a power conversion system for converting electrical power produced by a generator is provided. The power conversion system comprises at least one first power converter configured to convert alternating current from the generator to direct current, at least one second power converter configured to convert the direct current to alternating current, and at least one controller configured to reconfigure the at least one first power converter to convert direct current to alternating current and/or to reconfigure the at least one second power converter to convert alternating current to direct current.
Abstract:
A wind turbine component (18) includes an inner member (32) and an outer member (34) disposed relative to the inner member (32), wherein the inner and outer members (32, 34) move relative to each other. A plain bearing (200) is coupled to one of the inner or outer member (32, 34) and configured to provide a fluid film (202) for maintaining separation of and facilitating relative movement between the inner and outer members (32, 34). A position adjustment mechanism (78) is coupled to the one of the inner or outer member (32, 34) for selectively moving the plain bearing (200). A position controller (176) may be operatively coupled to the position adjustment mechanism (78) for controlling the position of the plain bearing (200). The wind turbine component may be a wind turbine generator (18) with the inner member and outer member corresponding to one of the stator and rotor assemblies (32, 34). Methods for controlling the generator are also disclosed.
Abstract:
Apparatus and methods to magnetize and demagnetize the magnetic poles of a rotor assembly for an electrical machine, such as a generator. The apparatus and methods provide for individually magnetize magnetic domains in the permanent magnetic material of the magnetic poles of a rotor assembly of the electrical machine after the electrical machine is installed in a larger assembly. The magnetization system may be used to magnetize and demagnetize the magnetic poles while the rotor assembly is connected with a prime mover, such a rotor of a wind turbine.
Abstract:
A power transmission system for a wind turbine comprises a gearbox and generator. The gearbox includes a gear-box housing and gearbox output member. The generator includes: a generator housing having a drive-end side and non-drive-end side, the drive-end side being coupled to the gearbox housing; a stator supported by the generator housing; a rotor coupled to the gearbox output member so as to be driven thereby; a non-drive-end shield coupled to the non-drive-end side of the generator housing; and at least one auxiliary drive mounted to the non-drive-end shield. The at least one auxiliary drive is configured to rotate the turning gear. A corresponding method of installing a wind farm including such a power transmission system is also provided.