Abstract:
A solvent delivery subsystem for a chromatography device performs relatively low pressure, high flow mixing of solvents to form a gradient and subsequent high pressure, low flow delivery of the gradient to the separation column. The mixing of the gradient is independent and does not interfere with the gradient delivery. To form the gradient, the outputs of an aqueous pump and an organic pump are mixed to fill a storage capillary while a downstream point from the storage capillary is vented to atmosphere. After gradient formation, the vent to atmosphere is closed, the solvent delivery system rises to high pressure, and only the aqueous pump runs for gradient delivery. To maintain integrity of the fluid stream, the solvent delivery system uses feed forward compensation and controls at least one parameter selected from the group consisting of pressure and flow in the conduit means to follow a gradual ramp.
Abstract:
Embodiments of the present invention are directed to methods and apparatus for placing a sample in a chromatographic system. The device and method feature placing samples held in a sample loop to pressurization prior to placing such sample loop in communication with high pressure conduits.
Abstract:
A method for diluting a sample upon injection into a chromatographic system flow, comprising: a) injecting an incremental volume of a sample into a chromatographic system flow, the sample comprising at least one analyte dissolved in a solvent; b) providing an incremental volume of a mobile phase into the chromatographic system flow; and repeating steps a) and b) until a total volume of stored sample is injected into the chromatographic system flow, wherein a dilution ratio of the injected sample equals the sum of the incremental volumes of the sample and the mobile phase divided by the sum of the incremental volumes of the sample.
Abstract:
Described are a rotary shear seal valve and a method for switching a high pressure fluid. The method includes applying a fixed force between a planar surface of a rotor and a planar surface of a stator. The planar surface of the rotor includes a fluidic channel and the planar surface of the stator has a pair of ports to receive and provide the fluid. A control signal is applied to a linear actuator coupled to the rotor to generate a controllable force between the planar surfaces of the rotor and stator. The control signal is responsive to a rotational state of the rotor. The total force between the planar surfaces of the rotor and the stator is substantially equal to a sum of the fixed force and the controllable force. The method reduces the wear and extends the lifetime of components in a rotary shear seal valve.
Abstract:
A microfluidic device, for use in separation systems, includes a substrate having a fluidic channel. One or more heaters made of a thick film material are integrated with the substrate and in thermal communication with the fluidic channel of the substrate. The one or more heaters produce a thermal gradient within the fluidic channel in response to a current flowing through the one or more heaters. A plurality of electrically conductive taps can be in electrically conductive contact with the one or more heaters. The plurality of electrically conductive taps provides an electrically conductive path to the one or more heaters by which an electrical supply can produce the current flowing through the one or more heaters. Alternatively, the thick film material can be ferromagnetic, and the electrical supply can use induction to cause the current to flow through the one or more heaters.
Abstract:
Variable- volume injection valves include a stator and a rotor. The stator has a first port, a second port, and a contact surface with a groove therein. The first port opens into the stator groove. The rotor has a contact surface with a groove therein. The contact surface of the rotor is urged against the contact surface of the stator such that the rotor groove opposes the stator groove with one end of the rotor groove overlapping the stator groove and the opposite end of the rotor groove overlapping the second port of the stator. The overlapping grooves of the rotor and stator provide a fluidic channel between the first and second ports of the stator. The rotor is movable with respect to the stator in order to vary a length of overlap between their overlapping grooves.
Abstract:
The invention feature devices and methods for preserving and processing samples comprising a fluid having deuterated compounds. The device of the present invention comprises a housing defining a first chamber and a second chamber. The first chamber is heated to an elevated temperature and receives the sample and performs a digestion process on the sample at the elevated temperature. The second chamber is cooled to a low temperature and receives the deuterated digested sample from the first chamber and performs one or more separation steps to isolate an analyte. The device of further comprises conduit means for containing and moving the sample into the first chamber to form a digested sample. The conduit means moves the digested sample from the first chamber to the second chamber to separate the sample to form at least one analyte. The analyte is maintained at the low temperature to preserve its deuterated form.