Method And Apparatus For Recycling Lithium-Ion Batteries

    公开(公告)号:US20240204279A1

    公开(公告)日:2024-06-20

    申请号:US18582718

    申请日:2024-02-21

    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.

    Charge material for recycled lithium-ion batteries

    公开(公告)号:US11955613B2

    公开(公告)日:2024-04-09

    申请号:US17412742

    申请日:2021-08-26

    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.

    MIXED CATHODE UPCYCLING
    24.
    发明公开

    公开(公告)号:US20240079580A1

    公开(公告)日:2024-03-07

    申请号:US17902021

    申请日:2022-09-02

    Inventor: Yan Wang Xiaotu Ma

    Abstract: A method for recycling secondary battery charge materials includes a one-step molten-salt process to upcycle mixed Ni-lean polycrystalline NMC cathodes into Ni-rich single-crystal NMC cathodes. The method includes receiving a recycling stream of charge materials from end-of-lifetime batteries, adding additional charge materials based on an upcycled battery chemistry intended for the upgraded, recycled battery, and sintering the combined charge materials for generating a single crystal charge material corresponding to the upcycled battery chemistry using a molten salt direct recycling process.

    Method And Apparatus For Recycling Lithium-Ion Batteries

    公开(公告)号:US20230198040A1

    公开(公告)日:2023-06-22

    申请号:US18113130

    申请日:2023-02-23

    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.

    LITHIUM RECOVERY PROCESS
    26.
    发明申请

    公开(公告)号:US20220325378A1

    公开(公告)日:2022-10-13

    申请号:US17719080

    申请日:2022-04-12

    Abstract: Lithium recycling from expended Li-Ion batteries occurs thought selective recovery of lithium charge materials from a recycling stream including transition metals used for the charge material. Li recovery includes dissolving the lithium based charge material in an organic acid having a resistance or lack of affinity to dissolution of transition metals, and distilling a leach solution formed from the dissolved charge material for generating a powder including lithium and trace impurities of the transition metals. Sintering of the generated powder forms lithium carbonate and carbonates of the trace impurities that eluded the selective leach, however, since the trace impurities are insoluble in water, the lithium carbonate is recoverable by water washing.

    CHARGE MATERIAL FOR RECYCLED LITHIUM-ION BATTERIES

    公开(公告)号:US20220311068A1

    公开(公告)日:2022-09-29

    申请号:US17841152

    申请日:2022-06-15

    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.

    CHARGE MATERIAL FOR RECYCLED LITHIUM-ION BATTERIES

    公开(公告)号:US20210391606A1

    公开(公告)日:2021-12-16

    申请号:US17412742

    申请日:2021-08-26

    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.

    Charge material for recycled lithium-ion batteries

    公开(公告)号:US11127992B2

    公开(公告)日:2021-09-21

    申请号:US16164952

    申请日:2018-10-19

    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.

    CHARGE MATERIAL FOR RECYCLED LITHIUM-ION BATTERIES

    公开(公告)号:US20190123402A1

    公开(公告)日:2019-04-25

    申请号:US16164952

    申请日:2018-10-19

    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.

Patent Agency Ranking