Abstract:
What is disclosed is system and method for contemporaneously reconstructing images of a scene illuminated with unstructured and structured illumination sources. In one embodiment, the system comprises capturing a first 2D image containing energy reflected from a scene being illuminated by a structured illumination source and a second 2D image containing energy reflected from the scene being illuminated by an unstructured illumination source. A controller effectuates a manipulation of the structured and unstructured illumination sources during capture of the video. A processor is configured to execute machine readable program instructions enabling the controller to manipulate the illumination sources, and for effectuating the contemporaneous reconstruction of a 2D intensity map of the scene using the second 2D image and of a 3D surface map of the scene using the first 2D image. The reconstruction is effectuated by manipulating the illumination sources.
Abstract:
What is disclosed is a system and method for compensating for motion during processing of a video of a subject being monitored for physiological function assessment. In one embodiment, image frames are received. Successive batches of N video frames are processed to isolate pixels associated with a body region of the subject where a physiological signal is registered by the camera. The pixels are processed to obtain a time-series signal for each batch. A determination is made whether movement during video acquisition of this batch of image frames exceeds a threshold level. If so then a size N of the next batch of image frames is changed to: N=N+M1, where N+M1≦Nm. Otherwise, a size N of a next batch is changed to: N=N−M2, where N−M2≧Nmin. Thereafter, processing repeats in a real-time continuous manner as the next batch of the N image frames is received. Various embodiments are disclosed.
Abstract:
What is disclosed is a system and method for determining the time it takes for an arterial pulse pressure wave to transit between a proximal and a distal point of a patient's body. In one embodiment, a signal is received from each of a first and second device worn circumferentially around a proximal and a distal region, respectively. The devices are worn on an area of exposed skin. Each of the devices comprises at least one emitter/detector pair fixed to an inner side of each device and has at least one detector paired to at least one illuminator. Each detector has at least one sensor that is sensitive to a wavelength band of light emitted by its illuminator. Each device generates signals that are proportional to an intensity of light emitted by an illuminator. The signals are analyzed to determine arterial pulse wave transit time between the proximal and distal regions.
Abstract:
What is disclosed is a system and method for assessing peripheral vascular disease from a thermal image captured using a thermal imaging system. In one embodiment the present method involves the following. First, a thermal image is received of a region of exposed skin of a peripheral body part of a subject being monitored for PVD. The thermal image was acquired by a thermal imaging system. Pixels in the thermal image each have a corresponding temperature value. The thermal image is analyzed to stratify the peripheral body part into a plurality of skin surface regions. A skin surface temperature for each respective skin surface region is identified based on pixels in the thermal image associated with those regions. The temperatures are then extracted such that a progression of temperatures can be ascertained. A method for forecasting the progression for future times is also disclosed.
Abstract:
What is disclosed is a method for monitoring a subject for cardiac arrhythmia such as atrial fibrillation using an apparatus that can be comfortably worn by the subject around an area of exposed skin where a photoplethysmographic (PPG) signal can be registered. In one embodiment, the apparatus is a reflective or transmissive wrist-worn device with emitter/detector pairs fixed to an inner side of a band with at least one illuminator emitting source light at a specified wavelength band. The illuminator is paired to a respective photodetector comprising one or more sensors that are sensitive to a wavelength band of its paired illuminator. The photodetector measures intensity of sensed light emitted by a respective illuminator. The signal obtained by the sensors comprises a continuous PPG signal. The continuous PPG signal analyzed for peak-to-peak pulse points from which the existence of cardiac arrhythmia such as atrial fibrillation event can be determined.
Abstract:
What is disclosed is a system and method for monitoring a subject of interest for functional blood oxygen saturation using an apparatus that can be comfortably worn by the subject around an area of exposed skin where a photoplethysmographic (PPG) signal can be registered. In one embodiment, the apparatus is a reflective or transmissive wrist-worn device with emitter/detector pairs fixed to an inner side of a band with at least two illuminators, each emitting source light at a different wavelength band. Each photodetector comprises sensors that are sensitive to a wavelength band of its respective illuminator. Each photodetector measures an intensity of sensed light emitted by a respective illuminator. The signal obtained by the sensors comprises a continuous PPG signal. The continuous PPG signal analyzed for functional blood oxygen saturation levels and communicated to a remote device. Various embodiments are disclosed.
Abstract:
What is disclosed is a system and method which reconstructs an N-pixel image of a scene such that Q pixel locations associated with identified regions of interest in a scene have a higher image quality when rendered relative to other pixels in the image. Acquisition and adaptive-quality compression are performed simultaneously by semi-synchronously or asynchronously temporally modulating an ordered set of sampling functions used to spatially modulate a pattern of light. The teachings hereof improve compression efficiency of a compressed sensing framework while improving encoding efficiency with respect to traditional compressed sensing techniques.
Abstract:
What is disclosed is a system for compensating for motion induced artifacts in a physiological signal obtained from multiple videos of a first and second region of interest a subject being monitored for a desired physiological function. At least one of the videos being of the first region and at least one of the videos being of the second region. The first region being at least one area of exposed skin where a desired signal corresponding to the physiological function can be registered by a video imaging device. The second region being an area where a movement by the subject is likely to induce motion artifacts into the signal. The videos are processed to isolate pixels associated with the first and second regions. Processed pixels of the isolated first regions to obtain a composite time-series signal. From the composite signal, a physiological signal corresponding to the physiological function is extracted.
Abstract:
What is disclosed is a system and method for compensating for motion induce artifacts in a physiological signal obtained from a video. In one embodiment, a video of a first and second region of interest of a subject being monitored for a desired physiological function is captured by a video device. The first region is an area of exposed skin wherein a desired signal corresponding to the physiological function can be registered. The second region is an area where movement is likely to induce motion artifacts into that signal. The video is processed to isolate pixels in the image frames associated with these regions. Pixels of the first region are processed to obtain a time-series signal. A physiological signal is extracted from the time-series signal. Pixels of the second region are analyzed to identify motion. The physiological signal is processed to compensate for the identified motion.
Abstract:
What is disclosed a system and method for estimating a position (or pose) of a camera relative to a surface upon which an object rests in an image captured by that camera such that a volume can be estimated for that object. In one embodiment, a matrix K is determined from parameters intrinsic to a camera used to capture image. An amount of a camera translation T is determined with respect to a set of real-world coordinates in (X,Y,Z). An amount of a camera rotation matrix R is determined from camera angles measured with respect to the real-world coordinates. A distance Zc of the camera at location (i,j) can then be estimated. A volume of the object in an image of that object can be estimated from the camera pose.