Abstract:
The invention relates to devices that produce displacements and/or forces (defined as actuators), when a magnetic field source(s) is (are) placed in such a way that the resulting magnetic field is of suitable strength and orientation in relation to the actuating element made from a Magneto-Mechanical Adaptive (MMA) material, so as to produce the desired displacement of the MMA element; or to devices that dampen mechanical vibrations by absorbing the vibration energy into an MMA element and/or by converting the vibration energy into electric power in the device and/or senses displacement velocity or acceleration. The electric energy can be dissipated to heat or led out from the device. In the latter case, the device works as a power generator. The principle of using the devices as sensors is also described. The MMA material here is defined as a material whose dimensions change when a magnetic field or stress is applied to it, based on twin boundary or austenite-martensite phase boundary motion or magnetostriction.
Abstract:
The invention provides a method of operating a dental scalar system having a vibrating scaling tip by continuously monitoring the amplitude and frequency of vibration of the tip which provides scaling power to a tooth in a patient's mouth. The amplitude and frequency of vibration of the tip is continuously adjusted to maintain a substantially constant scaling power. Preferably, the insert is vibrated at its resonant frequency and the system provides a substantially constant tip motion while the user varies the applied pressure between the tip and the tooth.
Abstract:
The present invention is directed to a high-powered (e.g., > 500 W) ultrasonic generator for use especially for delivering high-power ultrasonic energy to a varying load including compressible fluids. The generator includes a variable frequency triangular waveform generator coupled with pulse width modulators. The output from the pulse width modulator is coupled with the gates of an Isolated Gate Bipolar Transistor (IGBT), which amplifies the signal and delivers it to a coil that is used to drive a magnetostrictive transducer. In one embodiment, high voltage of 0-600VDC is delivered across the collector and emitter of the IGBT after the signal is delivered. The output of the IGBT is a square waveform with a voltage of +/- 600V. This voltage is sent to a coil wound around the ultrasonic transducer. The voltage creates a magnetic field on the transducer and the magnetorestrictive properties of the transducer cause the transducer to vibrate as a result of the magnetic field. The use of the IGBT as the amplifying device obviates the need for a Silicon Controlled Rectifier (SCR) circuit, which is typically used in low powered ultrasonic transducers, and which would get overheated and fail in such a high-powered and load-varying application.
Abstract:
Provided is a circuit for driving a magnetostrictive device including: a high voltage interrupting circuit section (C 2 ,R 1 ) for interrupting an instantaneously leaking high voltage depending on the switching operation of a power switch (SW); a voltage storage section (C 1 ) for rectifying an input voltage for a half of the positive cycle and storing it; a switching circuit section (Q 1 ) for supplying the voltage stored in the voltage storage section to the magnetostrictive device; and a voltage discharging circuit section (R 5 ) for discharge the voltage remaining in the voltage storage section when the power is interrupted.
Abstract:
The invention provides a method of operating a dental scalar system having a vibrating scaling tip by continuously monitoring the amplitude and frequency of vibration of the tip which provides scaling power to a tooth in a patient's mouth. The amplitude and frequency of vibration of the tip is continuously adjusted to maintain a substantially constant scaling power. Preferably, the insert is vibrated at its resonant frequency and the system provides a substantially constant tip motion while the user varies the applied pressure between the tip and the tooth.
Abstract:
An apparatus levitates and transports an object. The apparatus levitates the object above the surfaces of a plurality of vibrators by air pressure of sound waves that are generated by the vibrators. The apparatus has a plurality of vibration devices, each of which corresponds to one of the vibrators. Each vibration device includes a first transducer for vibrating the corresponding vibrator. Each transducer includes a super-magnetostrictive material. A common power source is connected to at least two of the first transducers for actuating the first transducers.
Abstract:
Apparatus and processes are disclosed for treating materials by exposure thereof to sonic or ultrasonic oscillations produced by oscillating plates which form part of a processing chamber and which are each activated by a plurality of transducers adjacent thereto. The transducers are excited by an electronic circuit capable of driving each transducer at selectable frequencies, phase relationships and amplitudes. The invention also comprises processes for the treatment of materials by exposure thereof to oscillating plates excited at predetermined combinations of frequencies, phases and amplitudes.
Abstract:
A system is disclosed for deicing the skin surface of aircraft and comprises a power supply unit to which are connected an electrical power accumulator and a program switch. Low inertia converters such as magnetostrictive vibrators are provided in close proximity to the skin surface and are fed from the power supply unit via key switches each having one input connected to the electrical power accumulator while its second input is connected to the program selector switch such that the switch will produce successive single or bundles of electrical pulses separated by pauses at the converters.
Abstract:
A system is disclosed for deicing the skin surface of aircraft and comprises a power supply unit to which are connected an electrical power accumulator and a program switch. Low inertia converters such as magnetostrictive vibrators are provided in close proximity to the skin surface and are fed from the power supply unit via key switches each having one input connected to the electrical power accumulator while its second input is connected to the program selector switch such that the switch will produce successive single or bundles of electrical pules separated by pauses at the converters.
Abstract:
An oscillator circuit adapted particularly for use with transducers for producing energy in the ultrasonic frequency range in which a combination of feedback signals representative of the voltage across the transducer and the current through the transducer are used to more precisely lock the oscillator to the resonant frequency of the load to thereby provide improved power transfer from the oscillator to the transducer. A current control circuit is also provided to control the amount of shock delivered by the transducer.