Abstract:
Watercraft automation and aquatic data utilization for aquatic efforts are disclosed. In one aspect, an anchor point is obtained and a watercraft position maintenance routine is actuated to control the watercraft to maintain association with the anchor point. In another aspect, prior aquatic effort data is obtained in association with an anchor point. In yet another aspect, current aquatic effort data is generated in association with an anchor point. In still another aspect, circuit aquatic effort data and prior aquatic effort data are utilized for prediction generation. In yet another aspect, current aquatic effort data and prior aquatic effort data are utilized to obtain another anchor point for a watercraft.
Abstract:
Watercraft automation and aquatic data utilization for aquatic efforts are disclosed. In one aspect, an anchor point is obtained and a watercraft position maintenance routine is actuated to control the watercraft to maintain association with the anchor point. In another aspect, prior aquatic effort data is obtained in association with an anchor point. In yet another aspect, current aquatic effort data is generated in association with an anchor point. In still another aspect, current aquatic effort data and prior aquatic effort data are utilized for prediction generation. In yet another aspect, current aquatic effort data and prior aquatic effort data are utilized to obtain another anchor point for a watercraft.
Abstract:
Watercraft automation and aquatic data utilization for aquatic efforts includes in one aspect, an anchor point is obtained and a watercraft position maintenance routine is actuated to control the watercraft to maintain association with the anchor point. In another aspect, prior aquatic effort data is obtained in association with an anchor point. In yet another aspect, current aquatic effort data is generated in association with an anchor point. In still another aspect, current aquatic effort data and prior aquatic effort data are utilized for prediction generation. In yet another aspect, current aquatic effort data and prior aquatic effort data are utilized to obtain another anchor point for a watercraft.
Abstract:
Watercraft automation and aquatic data utilization for aquatic efforts are utilized for fishing and network communication. In one aspect, an anchor point is obtained and a water craft position maintenance routine is actuated to control the watercraft to maintain association with the anchor point. In another aspect, prior aquatic effort data is obtained in association with an anchor point. In yet another, aspect, current aquatic effort data is generated in association with an anchor point. In still another aspect, current aquatic effort data and prior aquatic effort data are utilized for prediction generation. In yet another aspect, current aquatic effort data and prior aquatic effort data are utilized to obtain another anchor point for a watercraft.
Abstract:
Watercraft automation and aquatic data utilization for aquatic efforts are disclosed. In one aspect, an anchor point is obtained and a watercraft position maintenance routine is actuated to control the watercraft to maintain association with the anchor point. In another aspect, prior aquatic effort data is obtained in association with an anchor point. In yet another aspect, current aquatic effort data is generated in association with an anchor point. In still another aspect, current aquatic effort data and prior aquatic effort data are utilized for prediction generation. In yet another aspect, current aquatic effort data and prior aquatic effort data are utilized to obtain another anchor point for a watercraft.
Abstract:
Watercraft automation and aquatic data utilization for aquatic efforts are disclosed. In one aspect, an anchor point is obtained and a watercraft position maintenance routine is actuated to control the watercraft to maintain association with the anchor point. In another aspect, prior aquatic effort data is obtained in association with an anchor point. In yet another aspect, current aquatic effort data is generated in association with an anchor point. In still another aspect, current aquatic effort data and prior aquatic effort data are utilized for prediction generation. In yet another aspect, current aquatic effort data and prior aquatic effort data are utilized to obtain another anchor point for a watercraft.
Abstract:
Watercraft automation and aquatic data utilization for aquatic efforts are disclosed. In one aspect, an anchor point is obtained and a watercraft position maintenance routine is actuated to control the watercraft to maintain association with the anchor point. In another aspect, prior aquatic effort data is obtained in association with an anchor point. In yet another aspect, current aquatic effort data is generated in association with an anchor point. In still another aspect, current aquatic effort data and prior aquatic effort data are utilized for prediction generation. In yet another aspect, current aquatic effort data and prior aquatic effort data are utilized to obtain another anchor point for a watercraft.
Abstract:
A removable form is positioned within a boat hull and may be removed to optionally install a sonar transducer and a method of optionally positioning a sonar transducer within a boat hull after the hull is fabricated. The removable form is defined by a distal end and an opposing proximal end. The proximal end includes a retaining flange extending beyond a nominal thickness of a portion of the hull for anchoring the removable form within the boat hull. The distal end is substantially flush with the outer surface of the hull. The removable form is temporarily adhered to a boat mold and the hull is formed therearound. When the hull is hardened, it is removed from the mold with the removable form secured therein. The hull is operative in this condition, or the removable form may be removed and a sonar transducer may be positioned in its place.
Abstract:
A multi-anchor depth control system for a boat or other watercraft having a line for securing anchors to the boat, at least two anchors attached at or near opposing ends of the line, a depth finder, and a controller configured to automatically adjust the amount of line released from the boat to maintain the anchors on the floor of the body of water in which the boat is floating, based upon information obtained from the depth finder.
Abstract:
A powered watercraft system including a watercraft body, a propulsion system, a sensor configured to measure a value indicative of a manually-generated time-variable first propulsive force resulting from a body motion of the user to move the watercraft body, and a controller configured control the propulsion system to generate a second propulsive force for powering the watercraft body based on the value indicative of the first propulsive force, the generated second propulsive force being at least partially contemporary with the first propulsive force.