Abstract:
Provided herein are bimodal porous polymer microspheres comprising macropores and micropores. Also provided herein are methods and apparatus for fabrication such microspheres. Further provided herein are methods of using bimodal porous polymer microspheres.
Abstract:
A porous material of ultrahigh molecular weight polyethylene containing numerous interconnected pores, having permeability and being useful as filters, carriers and so forth; and a process for effectively producing said material. This material comprises minute particles of plasticized ultrahigh molecular weight polyethylene fused with one another so as to form interconnected pores communicating with the outer atmosphere. It is produced by injecting the plasticized ultrahigh molecular weight polyethylene into the cavity of a mold at a shear rate of 5 x 104 sec-1 or above and filling therein in such a manner that the ratio of G¿0? to V0 will be 0.7 g/cm?3¿ or less, wherein G¿0? represents product weight (g) and V0 represents product volume (cm?3¿).
Abstract:
A foam composition that includes a polymer material such as polyurethane or polyurea and a leachable water-soluble fine powder is provided. This composition can be used in a relatively simple process to obtain a foam body (porous body) that is uniform only at the surface or uniform throughout. The foam body can be suitably used as a golf ball member in golf balls required to have good controllability on approach shots. Also provided is a method for producing a foam member, which method includes the steps of molding the foam composition to obtain a solid molded body, and then leaching out and removing the water-soluble fine powder so as to obtain a foam-molded body.
Abstract:
In general, in various embodiments, the present disclosure is directed systems and methods for producing a porous surface from a solid piece of polymer. In particular, the present disclosure is directed to systems that include a track assembly, mold assembly, press assembly, and methods for using the same for producing a porous surface from a solid piece of polymer. In some embodiments, the present systems and methods are directed to processing a polymer at a temperature below a melting point of the polymer to produce a solid piece of polymer with an integrated a porous surface.
Abstract:
A method for making a polymer with a porous layer from a solid piece of polymer is disclosed. In various embodiments, the method includes heating a surface of a solid piece of polymer to a processing temperature and holding the processing temperature while displacing a porogen layer through the surface of the polymer to create a matrix layer of the solid polymer body comprising the polymer and the porogen layer. In at least one embodiment, the method also includes removing at least a portion of the layer of porogen from the matrix layer to create a porous layer of the solid piece of polymer.
Abstract:
In general, in various embodiments, the present disclosure is directed systems and methods for producing a porous surface from a solid piece of polymer. In particular, the present disclosure is directed to systems that include a track assembly, mold assembly, press assembly, and methods for using the same for producing a porous surface from a solid piece of polymer. In some embodiments, the present systems and methods are directed to processing a polymer at a temperature below a melting point of the polymer to produce a solid piece of polymer with an integrated a porous surface.
Abstract:
A method for making a polymer with a porous layer from a solid piece of polymer is disclosed. In various embodiments, the method includes heating a surface of a solid piece of polymer to a processing temperature below a melting point of the polymer and holding the processing temperature while displacing a porogen layer through the surface of the polymer to create a matrix layer of the solid polymer body comprising the polymer and the porogen layer. In at least one embodiment, the method also includes removing at least a portion of the layer of porogen from the matrix layer to create a porous layer of the solid piece of polymer.
Abstract:
The invention is directed to a process for preparing porous polymer materials by a combination of gas foaming and particulate leaching steps. The invention is also directed to porous polymer material prepared by the process, particularly having a characteristic interconnected pore structure, and to methods for using such porous polymer material, particularly for tissue engineering.
Abstract:
A medical implant with an external surface layer of silicone elastomer and having an open-cell structure is made by applying solid particles to the external surface layer of the implant before it is cured, curing the external surface layer with the solid particles embedded therein and then dissolving the solid particles with a solvent that does not dissolve the silicone elastomer. An implant having such an external surface layer is expected to help prevent capsular contraction, to help prevent scar formation, and to help in anchoring the implant within the body.