Abstract:
Novel microporous polymers in forms ranging from films to blocks and intricate shapes from synthetic thermoplastic polymers, such as, olefinic, condensation, and oxidation polymers, are disclosed. In one embodiment the microporous polymers are characterized by a relatively homogeneous, three-dimensional cellular structure having cells connected by pores of smaller dimension. Also disclosed is a process for making microporous polymers from such thermoplastic polymers by heating a mixture of the polymer and a compatible liquid to form a homogeneous solution, cooling said solution under non-equilibrium thermodynamic conditions to initiate liquid-liquid phase separation, and continuing said cooling until the mixture achieves substantial handling strength. Also disclosed are microporous polymer products which contain relatively large amounts of functionally useful liquids and behave as solids.
Abstract:
A PROCESS FOR THE MANUFACTURE OF A POROUS SHEET MATERIAL WHICH COMPRISES THE STEPS OF APPLYING A LIQUID HOMOGENEOUS MIXTURE OF A POLYMER, E.G., A POLYURETHANE, AND AN AUXILIARY SUBSTANCE, E.G., CAPROLACTAM, TO A SUBSTRATE, COOLING THE MIXTURE TO A TEMPERATURE AT WHICH THERE IS FORMED A SOLID PHASE SUBSTANTIALLY COMPRISING THE POLYMER, THE AUXILIARY SUBSTANCE COMPRISING A SOLVENT FOR THE POLYMER WHICH UPON COOLING OF THE MIXTURE PRECIPITATES FROM THE MIXTURE INTO A SEPARATE SOLID PHASE BEFORE THE FORMATION OF THE SOLID POLYMER PHASE IS COMPLETED, AND THEREAFTER REMOVING THE AUXILIARY SUBSTANCE TO FORM A HOMOGENEOUS UNIFORM POROUS SHEET MATERIAL.
Abstract:
The composition, advantageously an emulsion or a foam, includes an internal phase dispersed in a hydrophilic continuous phase, the percentage of the internal phase being higher than 50%. The emulsion composition contains nanocrystals of a polysaccharide other than cellulose, advantageously chitin, that are located at the interface between the internal phase and the hydrophilic continuous phase.
Abstract:
The present invention relates to a method for producing a resin composition foam comprising dissolving a supercritical fluid in a resin composition containing polytetrafluoroethylene and another resin other than polytetrafluoroethylene at a temperature equal to or higher than a glass transition point of the other resin, then foaming the resin composition by removing the supercritical fluid at a temperature lower than a temperature obtained by adding 15° C. to a thermal deformation starting temperature of the other resin, and subsequently cooling. In addition, the present invention relates to a resin composition foam, wherein the resin composition foam has a pore size of less than 50 μm, and the resin composition foam is any one of an open cell, a closed cell and a monolith type.
Abstract:
A process for producing a porous body with different physical properties in desired regions is provided by pore forming treatment, not by bonding two or more materials made porous beforehand, with, for example, an adhesive. Raw materials are prepared, each of which contains a polymer and a raw material preparation solvent. At least two types of the raw materials having different compositions are prepared. Thereafter, the respective raw materials are frozen into desired shapes to form frozen bodies thereof. The frozen bodies thus formed are brought into contact with each other to form an assembly thereof, the assembly is exposed to a condition under which the frozen bodies begin to melt, and the assembly is then freeze-dried. Thus, a porous body having regions different in physical properties can be obtained. Such a porous body can be used as, for example, an adhesion inhibitory material or a scaffold for a cell culture.
Abstract:
A porous polymer blend, and a method of producing a porous polymer blend from at least two immiscible polymers. The at least two immiscible polymer being blended together and exhibiting the absence of complete phase separation. The method of producing a porous polymer blend comprising: forming a liquid composition comprising at least two immiscible polymers dissolved in a common solvent; subjecting the liquid composition to a reduction in temperature to cause at least two immiscible polymers to phase separate into a common polymer rich phase and a common polymer poor phase; solidifying the at least two immiscible polymers in the common polymer rich phase so as to avoid complete phase separation of the at least two immiscible polymers; and removing the common polymer pore phase to provide a blend of the at least two immiscible polymers having a porous morphology.
Abstract:
A method of preparing a porous polymer structure comprising the steps of: forming a liquid composition comprising at least one polymer dissolved in at least one solvent; subjecting the liquid composition to stress, and if necessary also to a reduction in temperature, to cause the liquid composition to form a bi-continuous phase separated composition, the bi-continuous phase separated composition comprising a polymer rich phase and a polymer poor phase; solidifying the at least one polymer in the polymer rich phase; and removing the polymer poor phase from the polymer rich phase to provide the porous polymer structure having a bi-continuous morphology from the polymer rich phase.
Abstract:
A process for producing porous polymer beads in which polymers, preferably polyolefins or polyvinyl chloride, are dissolved in a solvent, preferably halogenated hydrocarbons or alkyl esters, at temperatures close to the boiling point of the solvent. The hot polymer solution is cooled, and the polymer beads formed during the cooling process are separated, washed and dried. The porous polymer beads are useful, for example, as catalyst carriers or as adsorption agents.
Abstract:
Microporous materials formed by thermally induced phase transition from a crosslinkable oil in combination with a thermoplastic polymer providing covalent bonding and immobilization of the oil diluent. Such materials are useful in graphic imaging substrates and fluid-repellent diapers and garments.
Abstract:
A single-phase composite structure of filamentary and non-filamentary semicrystalline morphology made from the same polymer, which is of a type capable of gelling in a suitable solvent and of being deformed into a high-modulus, high-strength product. Layers of the polymer in sheet form are interleaved with at least one layer, also of that polymer, made from filaments thereof. The method of making the product may involve heating a sheet of UHMWPE or other polymer gel (5% UHMWPE in 95% paraffin oil, by weight) to 125.degree. C., applying a knitted UHMWPE high modulus, high-strength structure on one side thereof, extracting the non-volatile paraffin oil therefrom with hexane, and evaporating the hexane.