Abstract:
A bi-fuel control system and assembly for modifying and operating a diesel engine to the extent that the engine is capable of running in either a full diesel fuel mode or a bi-fuel mode, where bi-fuel is defined as a mixture of a methane based gas and diesel fuel. The control system and assembly are designed to provide for either manual or automatic transfer between modes for continuous engine operation without interruption in output and at substantially equivalent efficiency levels. A gas control sub-system and sub-assembly are provided to control the amount of gas supplied to the diesel engine in the bi-fuel mode, and an electronic control sub-system and sub-assembly are provided to control the overall system and assembly based on engine load as determined from the intake manifold air pressure.
Abstract:
A system has an engine. The engine has a combustion chamber, a pre-combustion chamber apart from the combustion chamber, and an opening spanning between the combustion chamber and the pre-combustion chamber. The engine also has a first fuel supply system adapted to supply liquid fuel to the pre-combustion chamber and a second fuel supply system adapted to supply a second, different fuel to the combustion chamber. In certain instances, an oxygen supply system supplies oxygen into the prechamber.
Abstract:
A watercraft comprising a diesel fuel tank for fuelling general shipping requirements of the watercraft such as motoring from one location to another, wherein the watercraft additionally has a CNG pressure vessel thereon for storing CNG therein, said CNG being useable by the watercraft, from the pressure vessel, for powering an engine for coastal manoeuvering of the watercraft.
Abstract:
A standby generator includes a standby housing defining a cavity and an internal combustion engine. The engine includes an engine block including a cylinder comprising a piston, an engine housing at least partially covering the engine block, and a crankshaft configured to rotate about a vertical crankshaft axis in response to movement by the piston. The standby generator also includes an alternator configured to generate alternating current electrical power, a controller comprising a rectifier configured to convert the alternating current to a direct current and an inverter configured to convert the direct current to a clean alternating current electrical power, and a transfer switch configured to receive the clean alternating current electrical power from the controller and at least one of grid, solar, or battery power, and configured to supply power to an electrical load. The internal combustion engine, the alternator, and the controller are positioned within the cavity.
Abstract:
A uniflow-scavenged two-cycle engine includes: a cylinder which has a combustion chamber; a piston; a scavenging chamber that surrounds one end side of the cylinder in the stroke direction of the piston and to which compressed active gas is guided; a scavenging port that is provided in a portion of the cylinder which is positioned in the scavenging chamber and suctions active gas from the scavenging chamber to the combustion chamber in response to a sliding motion of the piston; a fuel injection opening that injects fuel gas into the active gas which is suctioned into the scavenging port; and a fuel injecting valve that opens and closes a fuel supply path through which a fuel tank, communicates with the fuel injection opening, and is disposed in an space isolated from the scavenging chamber.
Abstract:
A dual-fuel engine has a primary fuel supply and a secondary fuel supply, the primary and secondary fuels being arranged in use to mix with each other and with air for combustion in one or more cylinders of the engine. The supply of both the primary and secondary fuels is arranged to be actively managed in accordance with a desired engine performance characteristic by an electronic controller. In one arrangement the supply of a primary fuel is arranged to be actively reduced when a secondary fuel is supplied to the engine.
Abstract:
A dual fuel engine (2) is provided which is supplied with diesel fuel and at least one secondary fuel, such as LPG. The engine (2) has a plurality of cylinders (4, 6, 8, 10) in which pistons reciprocate. Each cylinder has diesel injectors (4A, 6A, 8A, 10A) for injecting the diesel fuel into the cylinder during an appropriate stroke of the piston and an air inlet valve (4C, 6C, 8C, 10C) which opens during the appropriate stroke of the piston to permit air flow therethrough. Each cylinder is further provided with LPG injectors (4B, 6B, 8B, 10B) for injecting the secondary fuel into the cylinders. The LPG injectors are independent to and separate from the diesel fuel injectors. The LPG and diesel fuel injectors are also independently controlled.
Abstract:
A method of converting a diesel engine to a natural gas engine comprising inserting a spark plug into a diesel fuel injector opening in a cylinder head; installing a throttle body on the diesel engine; installing a throttle body adaptor between a throttle body and an intake manifold of said diesel engine; and modifying a piston, whereby the compression ratio of said piston is decreased during operation of said piston. The method also includes installation of a waste gate and waste gate adaptor and a timing mask.
Abstract:
A system and assembly for modifying a diesel powered electric generator preferably of the reciprocating engine type to the extent that the generator is capable of running on either 100% diesel fuel or in a “bi-fuel” mode which is defined as a mixture of methane based gas and diesel fuel. The system and associated assembly is specifically designed to provide for the automatic or manual switching between the full diesel mode and the gas-diesel fuel or bi-fuel mode for continuous generator operation without interruption in generator output and at substantially equivalent or comparable efficiency levels. A gas control sub-assembly is included for controlling the amount of gas supplied to the driving engine of the generator while operating in the bi-fuel mode, a diesel control sub-assembly is included and designed for controlling the amount of diesel fuel supply to the driving engine while operating in the bi-fuel mode, and an electronic control an monitoring sub-assembly is included and designed for controlling various components of the overall system and is further structured to monitor and display certain data associated with operation and continuous current output within pre-determined, acceptable parameters.