Abstract:
An electrical pressure control load sense system having a pump connected inline to an operator control spool valve and a compensation circuit. The system also has a plurality of sensors, at least one pressure transducer, a micro-processor, a fixed orifice, a proportional pressure relief valve, and a swashplate angle sensor.
Abstract:
A method of controlling a hydraulic system having a variable displacement pump operatively coupled to an engine. The method includes detecting a speed of the engine, and determining a desired power value of the pump. The method also includes identifying an allowable power value that may be expended by the pump at the detected speed. The method also includes selecting a pump power value. The selected pump power value is the lower of the allowable power value and the desired power value. The method further includes adjusting the pump to deliver the selected pump power value.
Abstract:
A method for operating a vehicle heater dosing pump for conveying fuel having a piston which can be moved back and forth between a start position and an end position, and a drive unit which can be electrically excited by applying a voltage, having the following procedure: controlling and/or regulating the voltage for generating an effective voltage to transfer the piston from the start position to the end position, wherein the effective voltage reaches a first maximum (U1) in a start phase (t0-t1), and is lower than the first maximum in a subsequent intermediate phase (t1-t2). The effective voltage reaches a second maximum (U3) in an end phase (t2-t3) following the intermediate phase. A device is also provided having a dosing pump and a control/regulation unit. The control/regulation unit is suitable for controlling voltage applied to a drive unit of the dosing pump.
Abstract:
Pumping unit (10) for a machine to distribute concrete comprising: a pair of pistons (12, 13) provided with a relative pumping cylinder (22, 23) movable linearly for a determinate travel (S) to feed the concrete to a determinate circuit to distribute the concrete; and a hydraulic command circuit (11) operatively connected to both the pistons (12, 13), to determine an alternate pumping movement of the relative pumping cylinders (22, 23). The pumping unit (10) comprises at least a sensor member (15) operatively associated to at least one of the pistons (12, 13) in order to detect point-by -point one or more data relating to the operating condition of the pumping cylinder (22, 23) during its movement for the whole travel (S). The data comprise at least one of position, speed, stress and direction of movement of the relative piston (12, 13).
Abstract:
A sensor system (101) for determining a condition associated with a piston rod (106) of a reciprocating system (100) includes an interrogator system (204) having a first antenna (136). The sensor system further includes a second antenna (138) separated from the first antenna by an air gap distance (404). The second antenna is configured to be coupled to the piston rod of the reciprocating system. The second antenna is a patch antenna and is configured to communicate with the first antenna through a range of translational movement relative to the first antenna. The sensor system further includes a radio frequency sensor (140) coupled to the second antenna. The radio frequency sensor is configured to be coupled to the piston rod of the reciprocating system, measure a characteristic associated with the piston rod of the reciprocating system, and transmit data associated with the characteristic to the first antenna of the interrogator system through the second antenna.
Abstract:
Pumping unit (10) for a machine to distribute concrete comprising: a pair of pistons (12, 13) provided with a relative pumping cylinder (22, 23) movable linearly for a determinate travel (S) to feed the concrete to a determinate circuit to distribute the concrete; and a hydraulic command circuit (11) operatively connected to both the pistons (12, 13), to determine an alternate pumping movement of the relative pumping cylinders (22, 23). The pumping unit (10) comprises at least a sensor member (15) operatively associated to at least one of the pistons (12, 13) in order to detect point-by -point one or more data relating to the operating condition of the pumping cylinder (22, 23) during its movement for the whole travel (S). The data comprise at least one of position, speed, stress and direction of movement of the relative piston (12, 13).
Abstract:
A pump drive assembly (10) including a driver (18), a pump drive member (36) driven by the driver (18), and a decoupler (20a) that decouples the drive member (36) from the driver (18) when a force acting upon the drive member (36) exceeds a threshold force. The pump drive member (36) can be a piston rod (36), and the decoupler (20a) can be a magnet (20a) attached to the piston rod (36) and coupled to a magnetically attracted plate (22) driven by the driver (18). When a force resisting movement of the piston rod (36) exceeds the magnetic force coupling the magnet (20a) to the plate (24), the magnet (20a) decouples from the plate (24), and the pumping operation ceases.