Abstract:
An adhesive dispensing system includes a pump and at least one sensor positioned to sense movements of a component of the pump and produce signals based on the sensed movements. The dispensing system also includes a controller operating the pump and communicating with the at least one sensor to collect information regarding operational cycles of the pump based on the signals. As a result, one or more diagnostic processes are enabled at the controller during operation of the adhesive dispensing system. These diagnostic processes may include a leak rate test for the dispensing system, an overspeed detection test for the pump, and expected life cycle monitoring of the pump or other components.
Abstract:
The device for counting the strokes of a piston sliding within a cylinder comprises a support housing a magnet which generates a magnetic field. The support also houses a sensor arranged to sense the magnetic field, such that the passage of the piston into a position corresponding with the magnet causes a disturbance in the magnetic field, which is sensed by the sensor, to indicate a stroke of the piston.
Abstract:
A pressure tank fault detector and method provides a system for detecting a fault in a pressure tank, such as a well water tank. The system includes a current transformer positioned adjacent a pump power wire. A circuit includes a timer, a data recorder, and a system status indicator. When the pump operates, the current transformer sends a signal to the circuit and the timer measures the signal duration. The data recorder logs a short cycle when the timer measures less than a selectable predetermined amount of time. When two or more short cycles are recorded, a signal indicates that a tank fault has been detected. Preferably, the system includes a test circuit and permits a user to select the number of short cycles before the alarm and whether to record only consecutive short cycles. Optionally, the system detects and signals pump cycles that exceed a predetermined excessive run time.
Abstract:
An adhesive dispensing system includes a pump and at least one sensor positioned to sense movements of a component of the pump and produce signals based on the sensed movements. The dispensing system also includes a controller communicating with the at least one sensor to collect information regarding operational cycles of the pump based on the signals. As a result, one or more diagnostic processes are enabled at the controller during operation of the adhesive dispensing system. These diagnostic processes may include a leak rate test for the dispensing system, an overspeed detection test for the pump, and expected life cycle monitoring of the pump or other components.
Abstract:
A pressure tank fault detector and method provides a system for detecting a fault in a pressure tank, such as a well water tank. The system includes a current transformer positioned adjacent a pump power wire. A circuit includes a timer, a data recorder, and a system status indicator. When the pump operates, the current transformer sends a signal to the circuit and the timer measures the signal duration. The data recorder logs a short cycle when the timer measures less than a selectable predetermined amount of time. When two or more short cycles are recorded, a signal indicates that a tank fault has been detected. Preferably, the system includes a test circuit and permits a user to select the number of short cycles before the alarm and whether to record only consecutive short cycles. Optionally, the system detects and signals pump cycles that exceed a predetermined excessive run time.
Abstract:
The device for counting the strokes of a piston sliding within a cylinder comprises a support housing a magnet which generates a magnetic field. The support also houses a sensor arranged to sense the magnetic field, such that the passage of the piston into a position corresponding with the magnet causes a disturbance in the magnetic field, which is sensed by the sensor, to indicate a stroke of the piston.
Abstract:
A gas pressure driven fluid pump having an electronic cycle counter. The pump has a pump tank with a liquid inlet and a liquid outlet. A switching mechanism is operative within the pump tank for switching to exhaust porting when the fluid level within the pump tank falls to a low level position and switching to motive porting when the fluid level within the pump tank rises to a high level position. An electrical counter circuit is operatively connected to the pump tank for incrementing a stored count in response to the fluid level within the pump tank rising to a predetermined level.
Abstract:
A valve in the production flow line of an oil well closes a reed switch indicative of fluid being pumped through the line. The switch closure activates a first oscillator whose count is compared with a variable frequency oscillator having a frequency of approximately one-half that of the first oscillator. The comparison is made over a given period of time to ascertain the percentage of time the valve has been open and passing fluid. Theoretically, the valve should be open approximately fifty percent of the time because almost that much time is taken on the downstroke of the pumping assembly when no production is occurring. The integrated timer is adjusted to shut down the system when the percentage of time the valve is open drops to the preselected amount, usually equal to or less than around 50 percent. In response to the integration timer producing a signal, a shutdown timer is turned on which restarts the cycle after a preselected amount of time. The length of shutdown time for the pumping unit is preset according to the well fill-in rate. When the system is restarted by the shutdown timer, a pump-up timer is turned on which is adjusted to allow for a desired pump-up time. As the pump-up timer is allowing the system to recycle, the integration timer is reset and the recycling is completed if the requirements of the integration timer are met. Otherwise, the unit is shut down again and the system recycled. A variable electronic scaler is connected to the output of the integration timer which monitors the output signals from this timer.A reset circuit between the integrator and the scaler resets the scaler to zero after a successful recycle of the system. A successful recycle occurs when fluid is pumped at a flow rate equal to or greater than the preset minimum when the pump has been restarted after a shutdown period. If the pumped fluid flow rate achieves the minimum preset flow value during or at the end of the pump-up period, a reset signal is conveyed to the scaler to reset it to zero and continue pump operation and system recycling indefinitely, or until malfunctions interfere with the pumping operation or production drops below a level economically feasible for pumping operations.When malfunctions do occur, such as parting of the sucker rod, the pumped fluid flow rate will remain below the desired preset value and no reset signal will be conveyed to the scaler. At the end of the pump-up cycle the pump will not be pumping fluids and will be shut down in response to the signal from the integrator assembly. Since there will be no reset signal to the scaler, it will begin to accumulate the shutdown signals. After the preset number of times the integration timer produces a shutdown signal, the scaler turns off the whole system. It can then be restarted manually. This provides a safety device for equipment failure such as breaking of the sucker rod. Means are also provided for recording the various timed cycles and also for monitoring the number of signals transmitted to the scaler, thus being indicative of the number of times the system has automatically shut down and successfully recycled.Also a circuit is provided to determine the exact percentage of time that the pump is producing fluid flow, whether above or below the preset minimum percentage. A continuous recorder may be used with this circuit to maintain a constant record of the percentage of time the pump is flowing well fluids to allow the operator to determine if the preset minimum percentage should be lowered, and how much it should be lowered to obtain successful recycling of the pumping system.
Abstract:
An adhesive dispensing system includes a pump and at least one sensor positioned to sense movements of a component of the pump and produce signals based on the sensed movements. The dispensing system also includes a controller operating the pump and communicating with the at least one sensor to collect information regarding operational cycles of the pump based on the signals. As a result, one or more diagnostic processes are enabled at the controller during operation of the adhesive dispensing system. These diagnostic processes may include a leak rate test for the dispensing system, an overspeed detection test for the pump, and expected life cycle monitoring of the pump or other components.
Abstract:
The present disclosure relates to a method for determining the delivery rate of a liquid conveying device, in particular a concrete pump, wherein on the basis of measured values concerning the pressure of the liquid the number of the pump strokes of the concrete conveying device is determined, in particular substantially calculated, by series-connection of a plurality of filters with adaptive filter length and variable detection limits. Furthermore, the present disclosure relates to a liquid conveying device and to a construction vehicle with a liquid conveying device.