Abstract:
PROBLEM TO BE SOLVED: To eliminate necessity of an independent reaction agent level sensor. SOLUTION: A fluid delivery system for delivering a metered dose of fluid from a supply tank 28 to a downstream chamber or vessel 10, comprises a pump apparatus 20 comprising a pump plunger 32 which is operable to perform a pumping stroke under control of an electromagnetic actuator 36, including a solenoid 36a, to effect delivery of the fluid and a control unit 24 for supplying an input signal 58 to the solenoid to initiate a current flow to the solenoid and thereby initiate movement of the pump plunger. An electronic device 54 provides an output signal to indicate that movement of the pump plunger has stopped at an end of the pumping stroke of a pump plunger, and a timer determines a time difference between the input signal 58 being supplied to the solenoid and the output signal being output by the electronic device 54. A processor 26 compares the time difference with a predetermined time difference and determines, as a result of the comparison, whether or not the pump plunger has performed a valid pumping stroke in which an intended volume of fluid is displaced, whether or not the stroke can be used for total flow quantity calculation. COPYRIGHT: (C)2009,JPO&INPIT
Abstract:
A sensorless method of detecting piston collisions in a reciprocating free piston linear compressor driven by an electronically commutated linear motor having at least one excitation winding is provided. A free piston gas compressor is also provided.
Abstract:
A sensorless method of detecting piston collisions in a reciprocating free piston linear compressor driven by an electronically commutated linear motor having at least one excitation winding is provided. A free piston gas compressor is also provided.
Abstract:
A free piston gas compressor comprising a cylinder, a piston reciprocable within the cylinder and a reciprocating linear electric motor derivably coupled to the piston having at least one excitation winding. A measure of the reciprocation time of the piston is obtained, any change in the reciprocation time is detected and the power input to said excitation winding is adjusted in response to any detected change in reciprocation time.
Abstract:
A plunger arrival target time adjustment method for use in conjunction with a gas-producing well includes the steps of setting times of A valve open and close states, setting times of B valve open and close states where the time of B valve open state occurs separately from and in succession after the time of A valve open state, setting a target time for arrival of a plunger starting with opening of the well upon converting the A valve to the open state and ending with sensing of arrival of the plunger at an upper terminal position of the well, measuring travel time of the plunger from the opening of the well to the sensing of plunger arrival irrespective of whether the arrival occurs during the time of A valve open state or the time of B valve open state, and setting a new target time for plunger arrival based on a predetermined relationship of the measured plunger arrival travel time to the previously set plunger arrival target time.
Abstract:
The present invention is a sludge pump system which includes a means for monitoring operation of a sludge pump. The sludge pump includes a material cylinder and a piston moveable in the material cylinder. A pump drive moves the piston during working cycles which include a pumping stroke and a filling stroke. A pump valve mechanism connects the material cylinder to an outlet during pumping strokes and connects the material cylinder to an inlet during filling strokes. A means for monitoring operation of the pump is provided. The means for monitoring includes a means for sensing a first parameter related to operation of the pump drive, a means for sensing a second parameter indicative of operation of the piston, and a means for determining errors in the operation of the pump based upon the first parameter and the second parameter.
Abstract:
A system for the transport of high solids sludge includes a positive displacement pump for pumping sludge through a pipeline. The volume of sludge transported is accurately measured by determining the fill percentage during pumping cycle.
Abstract:
The lubricant level within a reservoir is difficult to monitor, leading to the reservoir being refilled more often than necessary to ensure that the reservoir always contains lubricant. A lubricant level sensing system is connected to and monitors various aspects of the pump assembly that draws lubricant from the reservoir. The pump assembly displaces a known volume of lubricant with each pump stroke. A lubricant-level estimator calculates an estimated lubricant level remaining in the reservoir based on a stroke-count value as sensed from the pump assembly and on a reference value stored in a memory. The estimated lubricant level provides the lubricant remaining and the rate of usage such that maintenance can be scheduled ahead of time to prevent the reservoir running dry.
Abstract:
An example system for detecting mud pump stroke information comprises a distributed acoustic sensing (DAS) data collection system coupled to a downhole drilling system, a stroke detector coupled to a mud pump of the downhole drilling system configured to detect strokes in the mud pump and to generate mud pump stroke information based on the detected strokes, and a fiber disturber coupled to the stroke detector and to optical fiber of the DAS data collection system configured to disturb the optical fiber based on mud pump stroke information generated by the stroke detector. The system further comprises a computing system comprising a processor, memory, and a pulse detection module operable to transmit optical signals into the optical fiber of the DAS data collection system, receive DAS data signals in response to the transmitted optical signals, and detect mud pump stroke information in the received DAS data signals.
Abstract:
A remote adhesive monitoring system is used in connection with adhesive applied to workpieces moving along a production line. A reservoir, pump, and applicator apply the adhesive to the workpieces. A monitor control computer has an associated data processing program. A pump cycle sensor senses pump cycles. An applicator sensor senses when the adhesive is applied to the workpieces. A workpiece sensor senses the workpieces moving along the line. The monitor control uses input from the applicator sensing means and the workpiece sensor to determine an ON time per each workpiece at a predetermined speed. The monitor control uses input from the workpiece sensor and the pump cycle sensor to determine the number of workpieces per pump cycle. The monitor control calculates an ON time to TOTAL time ratio per each workpiece, and will then calculate an amount of adhesive used for the given ON time to TOTAL time ratio.