Abstract:
The present invention provides waste-to-energy systems for processing medical and other wastes while concurrently recycling recoverable products and generating energy, including electrical energy, from the waste materials. Methods of processing the medical and other wastes and converting such waste materials to energy also are described.
Abstract:
The invention relates to a method for processing material that contains bioass, in which method material is led onto a conveyor (3, 7) and, by means of the conveyor, to an apparatus for mechanical processing (5) and/or to a further processing plant. The method further comprises measuring the moisture content (13) and or the size of pieces (4) of non-combustible material and/or the content of non-combustible material in the material flow in connection with said conveyor (3, 7), and conveying, on the basis of at least one of said measurements, material to the material to be conveyed for further processing and/or to the apparatus for mechanical processing (5), or to at least one material to be conveyed elsewhere than to the further processing plant or the apparatus for mechanical processing (5). The invention also relates to a system for processing material that contains biomass.
Abstract:
A combined treatment process of domestic garbage and sewage, comprising the following steps: {circle around (1)} sorting iron out of the domestic garbage; {circle around (2)} crushing the domestic garbage in which the iron has been removed; {circle around (3)} feeding the crushed domestic garbage into a sewage treatment tank, adding water and blowing air into the sewage treatment tank, where the domestic garbage is divided into floating substances, suspended substances, and settled substances; {circle around (4)} salvaging, dehydrating and drying the floating substances and then combusting them as fuel; {circle around (5)} collecting, filtering and drying the settled substances, wherein the settled substances having a calorific value of more than 4180 kJ/kg are burnt as fuel, the burnt substances and the settled substances having a calorific value of less than 4180 kJ/kg are used to replace clay material in a cement plant or used for making bricks; {circle around (6)} adding a flocculant into the sewage in which the floating substances and the settled substances have been removed so as to make the suspended substances settle, the suspended substances which have been settled are treated according to step {circle around (5)}; and {circle around (7)} treating the sewage. The process of the present invention effectively combines the domestic garbage treatment and sewage treatment, realizing the comprehensive treatment of domestic garbage and sewage as well as efficient utilization of resources.
Abstract:
A processing facility can dispose of food waste in environmentally undisruptive manners. The processing facility can convert the food waste into bio-energy and bio-fuel products, such as bio-diesel, ethanol, and electricity. The processing facility can sort the food waste based on the fats or carbohydrates content of the food waste, and the processing facility can include a fluidized bed combustion module for combusting portions of the food waste.
Abstract:
A method and an apparatus for treating and utilizing waste materials and mixtures thereof in multiple steps resulting in a high-yield utilization particularly of organic components of the waste for generating kinetically useful energy. The waste materials are sorted by classes, principally between organic and non-organic, e.g. metallic and ceramic, substances. The organic substances are briquetted and gasified, the produced gas being utilized for the direct and indirect generation of electricity and heat.
Abstract:
A method and an apparatus for treating and utilizing waste materials and mixtures thereof in multiple steps resulting in a high-yield utilization particularly of organic components of the waste for generating kinetically useful energy. The waste materials are sorted by classes, principally between organic and non-organic, e.g. metallic and ceramic, substances. The organic substances are briquetted and gasified, the produced gas being utilized for the direct and indirect generation of electricity and heat.
Abstract:
Char-handling processes for controlling overall heat balance, ash accumulation, and afterburn in a reheater are provided. Carbonaceous biomass feedstock is pyrolyzed using a heat transfer medium forming pyrolysis products and a spent heat transfer medium. The spent heat transfer medium is separated into segregated char and char-depleted spent heat transfer medium. The char-depleted spent heat transfer medium is introduced into a dense bed of heat transfer medium fluidized by a stream of oxygen-containing regeneration gas. All or a portion of the segregated char is combusted in the dense bed using the stream of oxygen-containing regeneration gas. A portion of the segregated char may be exported out of the pyrolysis system to control the overall heat balance and ash accumulation.
Abstract:
A method and plant for thermal treatment and chemical transformation of waste comprising natural and synthetic carbonaceous materials for generation of a fuel gas for further use is described. Pyrolysis gas and solid waste from a thermolysis and pyrolysis reactor (40), is further processed to produce a fuel gas having a substantially stable WOBBE index.
Abstract:
The method aims at obtaining from waste and more particularly from municipal solid waste (MSW) the energy contained therein at the highest level for industrial use by means of natural technologies and with low environmental impact. The method, denoted by the acronym NEW (Natural Energy from Waste) operates through the following process phases: a) aerobic digestion of the putrescible biological part to produce stabilized waste which is easy to handle, b) separation of a fraction rich in materials with a high heat value, c) storage of the residue, rich in biodegradable and inert substances, compacted into appropriate geometrical shapes in bioreactors which can be activated and sealed, d) activation of the bioreactors with water and their service in time during anaerobic digestion to supply biogas to be used for the production of energy, e) bio-stabilization and dehydration of the residual material of the anaerobic treatment with air, f) possible recovery of the materials produced in this way. In this way the energy contained in the waste, is extracted at the most refined level in the form of plastic, plastic/paper and methane for energy uses with maximum yield and reduced production of ash, and the end material leaving the bioreactors is fully exhausted of its energy content and inertised.