Abstract:
In order to stably operate a boiler using several kinds of solid fuels including depleted ash as fuels, adhesion of ash is suppressed. A calculator (9) preliminarily collects properties of a solid fuel, such as the content rate of ash and the composition of an ash constituent, as data (8). The calculator (9) uses the mix ratio of solid fuels as a parameter and calculates the composition of an ash constituent of the mixed fuels on the basis of the preliminarily measured composition of the ash constituent of each solid fuel. The calculator (9) determines a reference value of the rate of slug by which the ash deposition ratio is reduced on the basis of the relationship between the preliminarily measured ash deposition ratio and the slag ratio. Further, the calculator (9) calculates the mix ratio of each solid fuel using a thermodynamic equilibrium calculation so as to obtain an ash composition in which the slag ratio is not more than the determined reference value. On the basis of the mix ratio of each solid fuel calculated by the calculator (9), the amount of solid fuel dispensed from hoppers (1, 2) is adjusted by a fuel supply amount adjusting device (3). Thus, each solid fuel, the dispensed amount of which has been adjusted, is mixed by a mixer (4) and crushed by a crusher (5) before being supplied to a boiler (7) as a fuel and burned by a burner (6).
Abstract:
In an oxyfuel combustion boiler system, nitrogen gas 4 separated by an air separation unit (ASU) 1 is supplied as carrier gas to a pulverizer 5 for drying and pulverization of fuel 6. A fluid mixture 22 of the nitrogen gas 4 from the pulverizer 5 with pulverized fuel 21 is supplied to a powder separation device 24 where the pulverized fuel 21 is separated. The separated pulverized fuel 21 is mixed with the primary recirculated flue gas 16 and supplied to a burner 8.
Abstract:
According to a method for drying fuels in the form of dust, particularly to be fed to a gasification process, such as coal, petroleum coke, biological waste, or the like, wherein the fuel (1) is crushed in a mill (2) and fed to a filter/separator (3) by means of a propellant and drying gas, and at least part of the propellant/drying gas in the circuit is returned to the mill (2) after heating, the known disadvantages are not only to be avoided, but particularly a cost-effective milling and drying method and a corresponding system are to be provided, having low emissions and a low inert gas requirement. This is achieved according to the method in that part of the propellant/drying gas flow in cooled down and dehumidified in a spray tower (6), or the like, wherein part of the dried gas exiting the spray tower is fed to the environment and/or a firing process, and the other part is returned to the propellant/drying gas flow.
Abstract:
In an oxyfuel combustion boiler system, nitrogen gas 4 separated by an air separation unit (ASU) 1 is supplied as carrier gas to a pulverizer 5 for drying and pulverization of fuel 6. A fluid mixture 22 of the nitrogen gas 4 from the pulverizer 5 with pulverized fuel 21 is supplied to a powder separation device 24 where the pulverized fuel 21 is separated. The separated pulverized fuel 21 is mixed with the primary recirculated flue gas 16 and supplied to a burner 8.
Abstract:
A pulverizing system for reducing the size of material including a body, a pair of rotating members at least partially disposed within said body, and at least one impeller arm attached to each of said rotating members. The impeller arm attached to one of the rotating member throws material into a substantially head-on collision with material thrown by the impeller arm attached to the other rotating member.
Abstract:
In an oxyfuel combustion boiler system, nitrogen gas separated by an air separation unit (ASU) is supplied as carrier gas to a pulverizer for drying and pulverization of fuel. A fluid mixture of the nitrogen gas from the pulverizer with pulverized fuel is supplied to a powder separation device where the pulverized fuel is separated. The separated pulverized fuel is mixed with the primary recirculated flue gas and supplied to a burner.
Abstract:
A coal or carbonaceous material upgrading process for power station use, the process comprising a number of steps. First comminuting the coal or carbonaceous to a comminuted material. Second pre-treating the comminuted coal with a pulsing single frequency microwave and vacuum to reduce its water and oxygen content; the pre-treating stage being carried out at a temperature of up to 180 C Third, treating the pre-treated comminuted material with a pulsing single frequency microwave energy under vacuum to optimize the volatile organic materials; the treatment stage being carried out at a temperature of up to 350 C. Next pyrolyzing the treated coal with a pulsing single frequency microwave and vacuum to produce a hot gas and a solid carbon residue; the pyrolyzing stage is carried out at a temperature of up to 720 C. The solid carbon residue can then be separated from the hot gas, the volatile organic materials condensed to produce a liquid hydrocarbon product and a gas product; and the solid material and the gas product fed to a power station to produce electricity therefrom. The microwave energy applied at each of the stages has a single frequency of 100 megahertz to 300 gigahertz, has circular polarisation, and is pulsed at a frequency of 2 to 50 kilohertz. The pre-treatment step, the treatment step, and the pyrolysis step can be done under vacuum.