Abstract:
Disclosed herein are system, apparatus, article of manufacture, method and/or computer program product embodiments, and/or combinations and sub-combinations thereof, for using a thin-bed hot sedimentary aquifer (HSA) in geothermal energy generation applications. An example embodiment operates by pumping, via an extraction well, heated water from an extraction depth of an HSA. The HSA is identified based on a permeability satisfying a threshold permeability range and could even have a thickness equal to or less than about 100 meters. The example embodiment further operates by extracting, via a power generation unit, heat from the heated water to generate power and transform the heated water into cooled water. Subsequently, the example embodiment operates by injecting, via an injection well, the cooled water at an injection depth of the HSA. A first portion of the extraction well and a second portion of the injection well are disposed within the HSA.
Abstract:
The present invention relates to the utilization of deep ocean seawater in cooling water for offshore process applications. The present invention contemplates extracting deep seawater from regions of the ocean having minimal biological productivity for use as cooling water in offshore operations. In one embodiment, a sea water extraction system according to the invention may include a submersible pump, a pipe and riser, a floating vessel, a transfer pipe, and a cooling water heat exchanger system.
Abstract:
The present invention relates to the utilization of deep ocean seawater in cooling water for offshore process applications. The present invention contemplates extracting deep seawater from regions of the ocean having minimal biological productivity for use as cooling water in offshore operations. In one embodiment, a sea water extraction system according to the invention may include a submersible pump, a pipe and riser, a floating vessel, a transfer pipe, and a cooling water heat exchanger system.
Abstract:
A geothermal system including geothermal equipment (GTE) for transferring heat energy in a building. A ground loop heat exchanging (GLHE) subsystem is interfaced with the GTE, and a plate heat exchanger (PHE) for interfacing the GTE and the GLHE subsystem. The PHE establishes a first hydraulic loop between the GTE, and the PHE. The PHE established a second hydraulic loop between the GLHE subsystem and the PHE. The volumetric flow rate within the second hydraulic loop is greater or less than the volumetric flow rate within the first hydraulic loop. The PHE exchanges heat energy between the first and second hydraulic loops so that the GLHE subsystem is operated at inlet water temperatures that enable maximum heat transfer rate (HTR) performance when the GTE is fully loaded.
Abstract:
A modular geothermal measurement system that provides for the pumping of a heat transfer fluid. The modular unit simplifies on-site installation time by reducing the number of distinct components to be installed and allows for the optional incorporating of additional heat sources or sinks, whereby the length of ground loop can be reduced, further reducing installation costs. The modular measurement system further allows for the growth of the system over time by adding modules, increasing the ground loop pumping power while providing energy transfer data specific to each thermal load. A controller having an energy control module provides energy control points. Such a system allows the beneficiary of a geothermal investment to be billed for their benefit, enabling the investor to capture the economic benefit of the investment.
Abstract:
A system for producing geothermal energy may include a tiered geothermal loop energy production system. The tiered geothermal loop energy production system includes: a first closed-loop pipe system emplaced within a heat-producing geologic formation, the first closed-loop pipe system having a first energy production; and a second closed-loop pipe system emplaced within a heat producing geologic formation, the second closed-loop pipe system having a second energy production greater than the first energy production; and, optionally a third closed-loop pipe system emplaced within a heat producing geologic formation, the third closed-loop pipe system having a third energy production. An energy conversion system is configured to convert energy from the tiered geothermal loop energy production system to another form of energy.
Abstract:
A method for calculating ground storage device temperatures for operating a geothermal facility with a circulation system by means of at least one geothermal heat exchanger or an energy pile with inflow and outflow lines leading to the geothermal heat exchanger or energy pile. The underground temperature in the ground storage device and/or the temperatures on the inflow and outflow lines are measured. The method includes the following steps: designing a ground storage device model (2) for converting the measured temperature variations into dynamic energy flows in the ground storage device; designing an energy flow model (3) based on statistically determined models and influencing variables relating to heat and cold; and calculating the future temperature variations (5) in the ground storage device using the energy flow model (3) and the ground storage device model (2).
Abstract:
Systems, methods and devices for utilizing an energy chassis device designed to sense, collect, store and distribute energy from where it is available using devices that harvest or convert energy to locations requiring energy such as but not limited to HVAC (heating, ventilation and cooling) systems. The systems, methods and devices can also be used with a next generation geothermal heat exchanger that achieves higher energy harvesting efficiency and provides greater functionality than current geothermal exchangers.
Abstract:
Systems, methods and devices for utilizing an energy chassis device designed to sense, collect, store and distribute energy from where it is available using devices that harvest or convert energy to locations requiring energy such as but not limited to HVAC (heating, ventilation and cooling) systems. The systems, methods and devices can also be used with a next generation geothermal heat exchanger that achieves higher energy harvesting efficiency and provides greater functionality than current geothermal exchangers.
Abstract:
A system and method for performing at least one thermal response test for a medium. At least one request signal indicative of at least one request to perform the thermal response test is received. On the basis of the at least one request, at least one control signal is generated for causing at least one parameter of a fluid circulating through the medium to be acquired. The at least one measurement is indicative of a thermal property of the medium. The at least one control signal is then output to a hydraulic system.