Abstract:
A hand held probe unit has an infrared sensitive thermopile mounted in a metal housing kept at a constant reference temperature by a regulator circuit. A waveguide tube, surrounded by a thermally insulative probe, directs infrared emissions to the thermopile. The thermopile and regulator circuit of the probe unit are electrically connected to processing circuitry in a chopper unit. Prior to taking a patient's temperature, the probe unit is mated with the chopper unit so that the thermopile detects infrared emissions from a reference target which is also kept at a constant reference temperature by another regulator circuit. The processing circuitry repeatedly acquires the output level of the thermopile and stores calibration data. The probe unit is then removed from the chopper unit, the probe is covered with an IR transparent, disposable speculum, and is inserted in the patient's external ear canal. The processing circuitry then determines the patient's core temperature by comparing the stored calibration data to the maximum output of the thermopile during a succession of ear canal samplings.
Abstract:
An optical nondestructive testing method includes: a laser emitting step involving emitting a heating laser from a laser output device such that the intensity of the heating laser applied to a measurement point changes sinusoidally; a laser intensity measuring step involving measuring the intensity of the heating laser by a phase difference detector; an infrared radiation intensity measuring step involving measuring, by the phase difference detector, the intensity of infrared radiation radiating from the measurement point; a phase difference measuring step involving determining, by the phase difference detector, a phase difference between the intensity of the heating laser and the intensity of the infrared radiation, and outputting the phase difference determined to a determiner from the phase difference detector; and a connection area calculating step involving determining, by the determiner, a connection area in accordance with the phase difference and phase difference-connection area correlation information.
Abstract:
A temperature monitoring system includes a linear array of six pyroelectric sensors (22) mounted in a block (18). A through hole (20) is provided in the block (18) for each sensor (22). A bore in the block having an axis which intersects the axis of each through hole (20) accommodates a rotary shaft (26). The shaft (26) is provided with a diametrically extending bore (28) for each through hole (20). Thus rotation of the shaft (26) alternately exposes each sensor (18) to the shaft (26) itself and to an object in the line of sight of each sensor(22) as defined by its corresponding throughhole (20). The output signal from each sensor (22) is differentiated and used to provide a temperature measurement. The output signal is corrected for any drift in the temperature of the shaft (26) or block (18). This is effected by periodically bringing a heated calibration head (36) operating at a known temperature into the line of sight of each sensor (22).
Abstract:
A hand held probe unit has an infrared sensitive thermopile mounted in a metal housing kept at a constant reference temperature by a regulator circuit. A waveguide tube, surrounded by a thermally insulative probe, directs infrared emissions to the thermopile. The thermopile and regulator circuit of the probe unit are electrically connected to processing circuitry in a chopper unit. Prior to taking a patient's temperature, the probe unit is mated with the chopper unit so that the thermopile detects infrared emissions from a reference target which is also kept at a constant reference temperature by another regulator circuit. The processing circuitry repeatedly acquires the output level of the thermopile and stores calibration data. The probe unit is then removed from the chopper unit, the probe is covered with an IR transparent, disposable speculum, and is inserted in the patient's external ear canal. The processing circuitry then determines the patient's core temperature by comparing the stored calibration data to the maximum output of the thermopile during a succession of ear canal samplings.