Abstract:
The present invention relates to optical measurement devices and systems, and methods of using these systems and devices, and more particularly but not exclusively it relates to a system and apparatus adapted to measure optical properties in-situ.
Abstract:
The photo-coupled data acquisition system can have a container having a contour wall extending upwardly from a closed bottom, for containing a sample therein, a light emitter operable to emit diffused light into the container at an initial intensity, a photodetector operable to detect a reflected intensity of the diffused light, and a structure connected to the contour wall and holding the light emitter and the photodetector at a predetermined height above the bottom of the container and in an orientation facing inside the container, wherein during operation of the system, the initial light intensity is attenuated by the sample and the reflected intensity thereof can be correlated to an information value concerning a variable of interest of the sample.
Abstract:
Die Anmeldung betrifft ein Verfahren und eine Anordnung zur Detektion und Identifikation von Fremdstoffen auf Wasseroberflächen durch Bestimmung der Transmissionseigenschaften einer Wasseroberfläche und der durch Wasserdampf entstehenden Gasphase über der Wasseroberfläche. Aufgabe der Anmeldung ist es daher ein Verfahren und eine Anordnung anzugeben, bei dem eine ständige Überwachung einer Wasseroberfläche möglich ist, wobei die Auslösung eines Fehlalarmes durch Identifikation der Störung vermieden werden soll. Diese Aufgabe wird gelöst, indem die Transmissionseigenschaften der Wassseroberfläche durch die Abnahme der Lichtintensität eines mehrfach zwischen zwei Spiegeln reflektierten, schräg zur Wasseroberfläche einfallenden Lichtstrahles gemessen wird und gleichzeitig die Transmissionseigenschaft der über der Wasseroberfläche befindlichen und hauptsächlich aus Wasserdampf bestehenden Gasphase durch die Änderung der Intensität eines parallel zur Wasseroberfläche verlaufenden Lichtstrahles bestimmt wird.
Abstract:
The present invention relates to a system for in-situ measurement of an apparent spectrum of a water body. The system comprises a floating device, and an optical sensing and conduction device, an electronic measurement device, a control circuit and a power supply device which are loaded on the floating device. The floating device comprises a floating body ring and an optical probe mounting frame which is provided on the floating body ring in a direction perpendicular to a ring surface. The optical probe mounting frame comprises a vertical mounting assembly and a horizontal connecting assembly. The horizontal connecting assembly is provided radially along the ring shape of the floating body ring, one end of the horizontal connecting assembly being connected to the vertical mounting assembly, and the other end thereof being connected to the floating body ring, such that the vertical mounting assembly is overhung outside the ring surface of the floating body ring, and meanwhile a vertical projection of the vertical mounting assembly is located in the center of the ring surface. A ratio of an inner diameter to an outer diameter of the floating body ring is 0.80 to 0.85. The floating body ring is provided with a water-tight cavity which provides flotage for the whole floating device and used for loading a necessary electronic device and a necessary power supply assembly. An optical probe is vertically mounted on the optical probe mounting frame. The device for in-situ observation of the apparent spectrum of the water body disclosed by the present invention may be used for directly measuring a water-leaving radiance Lw of the water body, and can furthest reduce the method defects, personal errors and device errors. The precision of a remote sensing reflectivity Rrs finally observed of the water body is improved remarkably, and the operations are simple.
Abstract:
Methods and systems for detecting oil proximate to a body of ice is disclosed herein. An example system includes an energy emitter disposed proximate to a first surface of a body of ice. An energy detector is disposed proximate to a second surface of the body of ice. The energy detector is used to map a distribution of oil proximate to the body of ice based, at least in part, on differences in energy transmitted through the body of ice.
Abstract:
Apparatus for detecting the presence of a targeted group of hydrocarbons, such as diesel/fuel oil, lube oil, motor oil, hydraulic oil, jet fuel, mineral oil and crude oil in a highly reliable manner even though present at only extremely low concentration. A high power, pulsed light source is focused into a collimated beam that is reduced by a set of filters to a band of pulsed light within a precise set of wavelengths and directed vertically onto a target surface, such as a body of water. All but a precise band of light wavelengths returning to the apparatus are blocked so that substantially all light which then reaches an internal photodetector is within such precise band of wavelengths; as a result receipt of such light programmed intervals following such pulses is indicative of the presence of a member of the targeted hydrocarbon group.
Abstract:
Apparatus for detecting the presence of a targeted group of hydrocarbons, such as diesel/fuel oil, lube oil, motor oil, hydraulic oil, jet fuel, mineral oil and crude oil in a highly reliable manner even though present at only extremely low concentration. A high power, pulsed light source is focused into a collimated beam that is reduced by a set of filters to a band of pulsed light within a precise set of wavelengths and directed vertically onto a target surface, such as a body of water. All but a precise band of light wavelengths returning to the apparatus are blocked so that substantially all light which then reaches an internal photodetector is within such precise band of wavelengths; as a result receipt of such light programmed intervals following such pulses is indicative of the presence of a member of the targeted hydrocarbon group.
Abstract:
Apparatus is provided for optically measuring scalar irradiance or incident flux of radiant energy and for optically measuring naturally occurring chlorophyll fluorescence or upwelling radiance in a parcel of water in a natural setting. From a comparison of the two measurements, rate of primary photosynthetic production is calculated by appropriately programmed computer means. Readout means are provided to indicate the rate of primary production. Further, concentrations of chlorophyll that generate the primary production are also determined by means of the apparatus of this invention. The method of this invention, employing measurement instruments of the type disclosed, enables the determination of concentrations of chlorophyll and primary production in parcels of water.
Abstract:
A high-resolution in situ sensing system and method for providing continuous measurements of at least one dissolved analyte including a sample processing cell having at least a first conduit defining a first passage with at least one selectively-permeable wall capable of passing a portion of the sample liquid into a processing, fluid. The at least one selectively-permeable wall substantially resists flow of another portion of the sample liquid therethrough. Processing fluid is directed through the first conduit while moving the sample liquid and the reagent fluid relative to each other in one of a stationary, concurrent or a countercurrent flow relationship to achieve either partial or full equilibration between the sample liquid and processing fluid to generate at least partially equilibrated reagent fluid and a processed sample in a substantially continuous manner.