Abstract:
A miniature readhead for a photometric diagnostic instrument includes a housing of hand-held form factor, configured for receiving reagent sample media therein. The sample media has a plurality of test areas configured to react with, and change color, according to an amount of an analyte in a sample. The holder is sized and shaped for forming an indexed fit with the sample media and includes an array of light sources coupled to the housing, each of the light sources configured to emit light onto a respective one of the test areas. An array of chambers respectively containing an array of light detectors, is configured to enable each of the light detectors to receive diffuse, non-specular reflections of the light from the test areas, while substantially preventing the light detectors from receiving specular reflections of the light.
Abstract:
A self-contained, optical hand-held diagnostic device is provided with a body having a pocket-sized form factor sized and shaped for engagement by a user's hand. The body includes an integral power supply and an integral display. A channel receives reagent sample media in an indexed fit. The sample media has a plurality of spaced test areas which change color according to an amount of a constituent or property in the sample. Imagers are located within the body so that each of the imagers is superposed with one of the test areas when the sample media is indexed within the channel, to capture an image thereof. A processor is coupled with the imagers to analyze the captured images. The processor also derives a diagnosis value from the analysis, and generates an output corresponding thereto. The display is configured to receive and display the output.
Abstract:
The present invention provides for the analysis of colorimetric or fluorometric assays by way of capturing an image of the assay on the camera (32) built into the mobile phone (30). A disposable tool (20) is provided to enable the assay to be positioned an appropriate distance from the phone camera (30). A software application on the phone (30) can then analyse the captured image to determinate a qualitative or quantitative outcome of the assay. In many examples, the test will require no modification of the phone hardware and is thus a convenient and cheap technique for analysing an assay. In other embodiments, other disposable items such filter(s) (41, 42) and/or additional light source(s) (LED 22) may be provided.
Abstract:
A miniature readhead for a photometric diagnostic instrument includes a housing of hand-held form factor, configured for receiving reagent sample media therein. The sample media has a plurality of test areas configured to react with, and change color, according to an amount of an analyte in a sample. The holder is sized and shaped for forming an indexed fit with the sample media and includes an array of light sources coupled to the housing, each of the light sources configured to emit light onto a respective one of the test areas. An array of chambers respectively containing an array of light detectors, is configured to enable each of the light detectors to receive diffuse, non-specular reflections of the light from the test areas, while substantially preventing the light detectors from receiving specular reflections of the light.
Abstract:
Terahertz wave detection equipment comprises: a terahertz wave transceiver including a transmitter for transmitting a terahertz wave and a receiver for receiving a reflected terahertz wave reflected by a background reflected object which exists behind an object to be analyzed; a display; and an information processing apparatus, wherein the transmitter irradiates a terahertz wave based on a transmission signal including a specific frequency toward a two-dimensional area including the object to be analyzed, and the information processing apparatus is configured to analyze concentration of the object to be analyzed based on the reflected terahertz wave and generate a composite image in which a concentration image of the object to be analyzed is combined with an image of the background reflected object.
Abstract:
Terahertz wave detection equipment comprises: a terahertz wave transceiver including a transmitter for transmitting a terahertz wave and a receiver for receiving a reflected terahertz wave reflected by a background reflected object which exists behind an object to be analyzed; a display; and an information processing apparatus, wherein the transmitter irradiates a terahertz wave based on a transmission signal including a specific frequency toward a two-dimensional area including the object to be analyzed, and the information processing apparatus is configured to analyze concentration of the object to be analyzed based on the reflected terahertz wave and generate a composite image in which a concentration image of the object to be analyzed is combined with an image of the background reflected object.
Abstract:
A mobile device reads a test strip to determine a chemical condition of a fluid. The mobile device transmits the determined chemical condition to a fluid treatment system which treats the fluid in response to the determined chemical condition.
Abstract:
A mobile device reads a test strip to determine a chemical condition of a fluid. The mobile device transmits the determined chemical condition to a fluid treatment system which treats the fluid in response to the determined chemical condition.
Abstract:
A personal-sized, portable explosive detection field test kit (ETK) and related methods of use. Embodiments of the disclosed ETK include a case having a closing system featuring three levels of closure which retain the case cover securely in a closed position until ready for use, while being easily opened when necessary. The ETK instructions are permanently attached to the case to prevent loss. The case includes retention features which retain the kit components until needed and protects them against loss or damage. The ETK includes one or more test tubes that are color coded and include abbreviated instructions.