Abstract:
A housing for a sensor, comprising a housing upper part and a housing lower part which, in the assembled state, form a receiving space which is suitable to receive a circuit board, which, with regard to the object of specifying a housing for a sensor which receives a circuit board as far as possible in the correct position and protects the latter as reliably as possible against undesired movements relative to the housing is characterized in that deformable means are assigned to the housing upper part and/or the housing lower part which, in the assembled state of the housing parts, are bent into the receiving space.
Abstract:
A fluorescence analysis system may include a sensor head that has a light source configured to emit light into a flow of fluid, a detector configured to detect fluorescent emissions from the flow of fluid, and a temperature sensor. The system may also include a flow chamber that includes a housing defining a cavity into which the sensor head can be inserted. In some examples, the housing is configured such that, when a flow of fluid enters the housing, the flow of fluid divides into at least a major stream passing adjacent the light source and the detector and a minor stream passing adjacent the temperature sensor. Such a flow chamber may direct fluid past different sensors components while inhibiting a build-up of solids particles, the generation of air locks, or other flow issues attendant with continuous or semi-continuous online operation.
Abstract:
The invention relates to an optical sensor (1) for determining particle and/or dye concentrations in liquid or gaseous media and to a method for operating the same. The optical sensor (1) comprises at least one measuring head. The measuring head consists of an emitter unit (2) with a semiconductor emitting element (9), which emits visible emission light beams (8), and with a receiver unit (3) with a semiconductor receiving element (10). The portion of the emission light beams (8), which pass through an absorption section containing liquid or gaseous medium, is guided onto the receiving element (10). An evaluating unit (6) is coupled to the measuring head via electric leads (4, 4′), and the received signals, which are present at the output of the semiconductor receiving element (10), are evaluated inside said evaluating unit in order to determine the particle or die concentration.
Abstract:
The fire detector includes a carbon dioxide sensor and a microcomputer. When the rate of increase of the concentration of carbon dioxide at the sensor exceeds a threshold, an alarm is produced. The threshold is set at one of three possible levels by the microcomputer in response to the state of the atmosphere at the sensor as determined by the microcomputer based on several variables that are derived from the sensed concentration of carbon dioxide. The derived variables include the average concentration of carbon dioxide, the average rate of change of carbon dioxide concentration, the monotonicity of the increase or decrease of the carbon dioxide concentration and the range of concentrations sensed in each cycle of operation. The threshold setting is determined every ten seconds. In this way, the setting of the rate threshold is responsive to variations in the carbon dioxide level at the sensor that are caused by entities other than a fire, such as the presence or absence of people in a closed room.
Abstract:
A diffusion-type gas sample chamber for use in a gas analyzer consists of an elongated hollow tube having an inwardly-facing specularly-reflective surface that permits the tube to function also as a light pipe for transmitting radiation from a source to a detector through the sample gas. A number of filtering apertures in the wall of the otherwise non-porous hollow tube permit the sample gas to enter and exit freely under ambient pressure. Particles of smoke and dust of a size greater than 0.1 micron are kept out of the chamber by use of a semi-permeable membrane that spans the apertures in the hollow tube. Condensation of the sample gas components is prevented by heating the sample chamber electrically to a temperature above the dew point of the component of concern.
Abstract:
The invention relates to an optical sensor (1) for determining particle and/or dye concentrations in liquid or gaseous media and to a method for operating the same. The optical sensor (1) comprises at least one measuring head. The measuring head consists of an emitter unit (2) with a semiconductor emitting element (9), which emits visible emission light beams (8), and with a receiver unit (3) with a semiconductor receiving element (10). The portion of the emission light beams (8), which pass through an absorption section containing liquid or gaseous medium, is guided onto the receiving element (10). An evaluating unit (6) is coupled to the measuring head via electric leads (4, 4'), and the received signals, which are present at the output of the semiconductor receiving element (10), are evaluated inside said evaluating unit in order to determine the particle or die concentration.
Abstract:
The improved sample chamber includes an elongated hollow tube (12) closed at one end (14) and having specularly-reflective inwardly facing surfaces (16). A source (26) of radiation and a detector (28) of radiation are mounted side by side in the open end of the hollow tube, both facing the closed end. A plurality of filtering apertures (20) are formed in the tube (12), and each aperture is covered by a sheet (22) of a semipermeable membrane that serves to prevent airborne particles larger than a predetermined size from entering the chamber while not interfering with the free diffusion of the gas to be measured into and out of the chamber. The use of an elongated hollow tube that is closed at one end results in no loss in the efficiency with which the radiation is conducted from the source to the detector while decreasing the external length of the chamber by 50 percent.
Abstract:
Disclosed is an infrared optical sensor for the continuous analysis of a liquid flowing in a pipe. The sensor includes, in a housing, a central section of duct through which the liquid to be analyzed flows, and a spectral analysis device using a light beam, including an infrared source which emits a signal which is received by a receiving device having passed through the liquid, an optical component which allows the light beam to pass through the liquid, and a support plate which carries the infrared source and the receiving device. The liquid to be analyzed circulates through a loop formed by walls in the form of an arch of the optical component and by a projection of the housing in the optical component. A sealing gasket is compressed between the optical component and the housing, in order to prevent any diffusion of liquid on the interior of the housing.