Abstract:
An optical-based sensor system that detects emitted light. An exemplary embodiment of an optical-based sensor has a substrate with a surface and an internal region; a shell disposed above the substrate surface, the shell operable to receive incident light characterized by a first wavelength; a beam disposed below the shell; a photodiode on the substrate surface below the beam, and in response to receiving a first portion of the incident light, the photodiode is operable to generate a charge such that a motion is induced to resonate at a resonate frequency; and a phosphor in the substrate internal region and operable to receive a second portion of the incident light, the phosphor further operable to emit light characterized by at least one second wavelength that is different from the first wavelength of the incident light, the phosphor emitted light transmitted through the photodiode, the beam, and the shell.
Abstract:
The invention relates to a light source for irradiating molecules present in a detection volume with one or more selected wavelengths of light and directing the fluorescence, absorbance, transmittance, scattering onto one or more detectors. Molecular interactions with the light allow for the identification and quantitation of participating chemical moieties in reactions utilizing physical or chemical tags, most typically fluorescent and chromophore labels. The invention can also use the light source to separately and simultaneously irradiate a plurality of capillaries or other flow confining structures with one or more selected wavelengths of light and separately and simultaneously detect fluorescence produced within the capillaries or other flow confining structures. In various embodiments, the flow confining structures can allow separation or transportation of molecules and include capillary, micro bore and milli bore flow systems. The capillaries are used to separate molecules that are chemically tagged with appropriate fluorescent or chromophore groups.
Abstract:
There are many inventions described and illustrated herein. In one aspect, the present invention is a system, a device and a method for sensing the concentration of an analyte in a fluid (for example, a fluid sample) or matrix. The analyte may be glucose or other chemical of interest. The fluid or matrix may be, for example, the fluid or matrix in the body of an animal (for example, human), or any other suitable fluid or matrix in which it is desired to know the concentration of an analyte. In one embodiment, the invention is a system and/or device that includes one or more layers having a plurality of analyte-equivalents and mobile or fixed receptor molecules with specific binding sites for the analyte-equivalents and analytes under analysis (for example, glucose). The receptor molecules, when exposed to or in the presence of analyte (that resides, for example, in a fluid in an animal), bind with the analyte (or vice versa). As such, some or all (or substantially all) of the receptor molecules within a given layer may bind with the analyte, which results in a change in the optical properties of one or more of the layers. These layer(s) may be examined or interrogated, via optical techniques, whereby the optical response of the layers and/or, in particular, the substance within the layer(s), may be measured, evaluated and/or analyzed.
Abstract:
The Laser Induced Fluorescence Attenuation Spectroscopy (LIFAS) method and apparatus preferably include a source adapted to emit radiation that is directed at a sample volume in a sample to produce return light from the sample, such return light including modulated return light resulting from modulation by the sample, a first sensor, displaced by a first distance from the sample volume for monitoring the return light and generating a first signal indicative of the intensity of return light, a second sensor, displaced by a second distance from the sample volume, for monitoring the return light and generating a second signal indicative of the intensity of return light, and a processor associated with the first sensor and the second sensor and adapted to process the first and second signals so as to determine the modulation of the sample. The methods and devices of the inventions are particularly well-suited for determining the wavelength-dependent attenuation of a sample and using the attenuation to restore the intrinsic laser induced fluorescence of the sample. In turn, the attenuation and intrinsic laser induced fluorescence can be used to determined a characteristic of interest, such as the ischemic or hypoxic condition of biological tissue.
Abstract:
Disclosed is a substrate inspecting method in which light is projected to a part (21) mounted on a substrate (20) from a ring-shaped light source (29), reflected light form the surface of a soldered portion (44) is imaged by an imaging unit (32) and the nature of the soldered portion is inspected by its imaged pattern, characterized by applying fluorescent agents (70) to at least the periphery of the soldered portion of the mounted part on the surface of the substrate, exposing the surface coated with the fluorescent agents to light from the ring-shaped light source to excite the fluorescent agents, exposing the surface of the soldered portion to secondary illuminating light produced by the fluorescent agents to image its reflected light.
Abstract:
A system for remotely sensing light from within a monitored environment containing one or more retro-reflective optical elements. The system includes an illuminator including a light source and a reflector unit comprising a deformable mirror arranged to receive light from the light source and to reflect the received light. This outputs illumination light from the illuminator for illuminating the optical element(s) within the monitored environment. A detector is arranged to receive light returned by the one or more retro-reflective optical elements in response to the illumination light. The detector determines a wavefront of the returned light and detects a property of the monitored environment according to the returned light. The reflector unit is arranged to deform the deformable mirror according to the determined wavefront such that light from the light source is reflected by the deformable mirror so deformed to output illumination light with a modified wavefront.
Abstract:
Die Erfindung betrifft ein Messsystem insbesondere zur Blutzuckerbestimmung mit einer photometrischen Messeinheit (16), die eine Lichtquelle (22) und einen Detektor (24) umfasst, und einem mit einer Probe, insbesondere einer Körperflüssigkeit beaufschlagbaren und für einen optischen Nachweis eines Analyten in einen Strahlengang (18) zwischen der Lichtquelle (22) und dem Detektor (24) bringbaren analytischen Testelement (14). Für eine verbesserte Mehrwellenlängenmessung wird vorgeschlagen, dass die Lichtquelle (22) einen in einem ersten Wellenlängenbereich zur Aussendung von pulsierendem Wechsellicht (28) ansteuerbaren ersten Strahler (26) und einen in einem zweiten Wellenlängenbereich zur Emission von Fluoreszenzlicht (32) anregbaren zweiten Strahler (30) aufweist.
Abstract:
A method and apparatus for detecting pathogens and particles in a fluid in which particle size and intrinsic fluorescence of a simple particle is determined, comprising a sample cell; a light source on one side of the sample cell for sending a focused beam of light through the sample, whereby portions of the beam of light are scattered at various angles by particles of various sizes present in the sample area; a particle size detector positioned in the light path for detecting a portion of forward scattered light; a pair of fluorescence detectors positioned off axis from the beam of light; and a pair of elliptical mirrors positioned such that an intersection of the incoming particle stream and the light beam are at one foci of each ellipsoid, and one of said pair of fluorescence detectors lies at the other foci.
Abstract:
There are provided a control device of an image reading apparatus, an operation method and an operation program thereof, and an image detection system capable of quickly and easily outputting an image having an appropriate density for analysis from an image reading apparatus. An image receiving unit (80) receives a pre-image output in pre-scanning performed before main scanning for outputting a main image for analysis in an image reading apparatus (11). A region information receiving unit (81) receives information of a region in the pre-image designated by a user. A calculation unit (83) calculates an appropriate voltage value (HVM) that is a voltage value of the photomultiplier (31) at which a density of the region becomes an appropriate density for analysis. A scanning conditions setting unit (84) sets the appropriate voltage value (HVM) as temporary scanning conditions (76M) of main scanning.
Abstract:
Water-soluble polymers may be added to an aqueous system to inhibit or decrease scale deposition within the aqueous system. In a non-limiting embodiment, the water-soluble polymer(s) may be or include polymaleates, polyacrylates, copolymers thereof, and combinations thereof. The treated aqueous system may include a decreased amount of scale deposition as compared to an otherwise identical aqueous system absent the water-soluble polymer(s).