Abstract:
Gain hysteresis exhibited by the photomultiplier detector of a single beam spectrophotometer is reduced by illuminating the detector and applying dynode voltage thereto during the normal "off" or "idle" interval of the spectrophotometer.
Abstract:
The embodiment of the pollution monitor described in the specification uses the principle of ultraviolet-induced fluorescence to detect and measure gaseous pollution in air, smokestack exhaust and other fluids. Improved calibration or standardization is effected by the use of one or more calibration cells in which a non-gaseous material simulates the fluorescence of the gaseous species under investigation, by scattering the incident ultraviolet light into a spectral region similar to that of the fluorescence of the gaseous species. Examples of suitable materials have been found to be aluminum, gold, platinum and molybdenum, all of which scatter light in the appropriate spectral region at a level which stays substantially constant with time.In the preferred embodiment, the sample cell and the calibration cells are all formed in a single cell block by drilling holes into solid bar material which holes function as the individual cell cavities. The sample cell has ports for the flow of sample gas therethrough, while in each of the calibration cells, the metallic material is mounted to intercept and scatter the incident ultraviolet light energy. The cell block is constructed to rotate so that the several cells can be individually aligned in the light path between the ultraviolet source and fluorescence detector.
Abstract:
A flow cell analyzes a fluid sample. A flow cell body contains a reference material and includes at least one hollow chamber to contain the fluid sample. Opposing surfaces of the flow cell body each have at least one transparent portion thereof. An optical path for light traversing through the flow cell body is defined in part by the transparent portions. A switching mechanism adjusts the amount of the reference material in the optical path to effect switching of the flow cell between a reference measurement state and a fluid sample measurement state. The reference measurement state corresponds to a first light intensity measurement and the fluid sample measurement state corresponds to a second light intensity measurement.
Abstract:
Systems, apparatus and methods determine the presence of a volatile substance in expired breath. Alcohol concentrations can be determined from expired breath through the use of electromagnetic detection. The systems, apparatus and methods allow measurements of volatile substances to be done accurately and quickly over a wide range of temperatures, and are easily incorporated into vehicles.
Abstract:
A gas sensor for measuring concentration of a predetermined gas comprises a light source arranged to emit pulses of light, a measurement volume, a detector arranged to receive light that has passed through the measurement volume, and an adaptable filter disposed between the light source and the detector. The gas sensor has a measurement state in which it passes at least one wavelength band which is absorbed by the gas and a reference state in which said wavelength band is attenuated relative to the measurement state. The adaptable filter is arranged to change between one of said measurement state and said reference state to the other at least once during each pulse.
Abstract:
A standard plane sample which supplies an optical characteristic measuring device with reference data. The standard plane sample including a sample portion that is measured by the optical characteristic measuring device to supply measurement data, and a recording medium that stores identification data for identifying a kind of the sample portion as well as reference data corresponding to the optical characteristic of the sample portion.
Abstract:
The invention relates to an optical sensor (1) for determining particle and/or dye concentrations in liquid or gaseous media and to a method for operating the same. The optical sensor (1) comprises at least one measuring head. The measuring head consists of an emitter unit (2) with a semiconductor emitting element (9), which emits visible emission light beams (8), and with a receiver unit (3) with a semiconductor receiving element (10). The portion of the emission light beams (8), which pass through an absorption section containing liquid or gaseous medium, is guided onto the receiving element (10). An evaluating unit (6) is coupled to the measuring head via electric leads (4, 4′), and the received signals, which are present at the output of the semiconductor receiving element (10), are evaluated inside said evaluating unit in order to determine the particle or die concentration.
Abstract:
Method for analysing gaseous or liquid samples, utilising a one-way measuring element with a measuring channel containing at least one optical or electrochemical sensor and being provided with sealing elements on either end. In order to obtain accurate measurements in a simple manner the proposal is put forward that for measuring purposes a storage medium in the measuring channel be replaced by a separating medium which should then be replaced by the sample. Sample and storage medium will remain in the measuring element when it is discarded.
Abstract:
A method and apparatus are disclosed for reading a test element and a reference element in an incubator to insure that a) they are both read at the same wavelength and b) the reading at this wavelength of the reference element used to compare the test element reading, is the closest in point of time to the reading taken of the test element. In some cases, this requires the comparison with a reference element that is read after the reading of the test element.
Abstract:
The present subject matter relates to methods of high-speed analysis of product samples. Light is directed to a portion of a product under analysis and reflected from or transmitted through the product toward an optical detector. Signals for the detector are compared with reference signals based on a portion of the illuminating light passing through a reference element to determine characteristics of the product under analysis. The products under analysis may be stationary, moved by an inspection point by conveyor or other means, or may be contained within a container, the container including a window portion through which the product illuminating light may pass.