Abstract:
A low profile electromechanical keyboard switch, displaying very low electrical bounce. The switch key top bears against a generally cylindrical plunger which has a depressed flat portion on its side engageable with a tactile ball biased by a spring nested in the switch housing. Upon application of a force to the key top which exceeds a threshold value, the tactile ball is displaced from the flat and over the shoulder defined between the depressed flat and the cylindrical portion of the plunger. Sudden, positive movement of the plunger against an underlying contact leaf ensues. The contact leaf is branched into multiple contact fingers, and arranged with respect to an underlying contact plate so that wiping contact occurs between fingers and plate. The switch housing is configured to carry sufficient diodes and resistors to assure full control and encoding functions in the keyboard in which such switch may be mounted.
Abstract:
A contact bounce reduction system including: a movable member, and a contact bounce damping device including: a body, a first ball and a second ball, a first resilient member and a second resilient member, a piston. The first resilient member holds the first ball in the seat and the second resilient member holds the second ball in the seat when the piston is in a default extended position, and a third resilient member biases the piston towards the default extended position. The movable member actuates the piston towards the retracted position, causing the first ball and the second ball to move radially out from the seat, and the third resilient member to accumulate energy.
Abstract:
The present invention discloses a de-bouncing keypad and a preparation method thereof, wherein the keypad is composed of a rubber substrate and a metal contact having three layers of layered structures. A layer of tin alloy or lead alloy is plated on a surface of the metal contact by electroplating or chemical plating. The metal contact plated with the tin alloy or lead alloy has excellent contact bouncing resistance and arc-ablation resistance, and the metal contact is further composited with the rubber to shape and prepare the rubber de-bouncing keypad.
Abstract:
An apparatus and method for de-bouncing keypad inputs is disclosed including interrupting a processor upon detecting a key press, reading input signals from the key pad to determine an initial port value and starting a timer. A keypad interrupt is disabled and processing resumes until expiration of the timer. The timer interrupts the processor and the input signals are read a second time and combined with the initial port value to determine a key identifier. The timer is started again and processing resumes. Upon expiration of the timer the processor checks for key release. If release is not detected, the timer is again started. If release occurs, the timer is disabled and the keypad interrupt is enabled.
Abstract:
A printed circuit board comprising a dielectric film substrate and a plurality of circuit patterns for a capacitor switch formed on said dielectric film substrate at a certain space from each other. Each of the circuit patterns comprises a switch electrode pair formed on one surface of the dielectric film substrate, a first fixed electrode connected to one of the switch electrode pair, a first lead pattern connected to the other of the switch electrode pair, a second fixed electrode formed on the other surface of the dielectric film substrate in such a manner as to be opposed to the first fixed electrode through the dielectric film substrate, said first and second fixed electrodes forming a fixed electrode pair, and a second lead pattern connected to the second fixed electrode. A plurality of the fixed electrode pairs are arranged at an enlarged space larger than the certain space defined between the circuit patterns, and the density of the first and second lead patterns disposed in the enlarged space is reduced.
Abstract:
A pressure responsive, variable resistance, analog switch has first and second conductors interleaved in spaced-apart relationship and disposed on a base member. An insulative spacer ring is positioned around and rises above the first and second conductors. A resilient cover sheet is attached to the top of the insulative spacer ring in spaced relationship over the conductors to define an enclosure between the resilient cover sheet and the base member. A pressure sensitive resistive conductor composition is disposed on the resilient cover sheet or on the conductors in the enclosure to interconnect a resistance between the first and second conductors when the resilient cover sheet is depressed against the conductors. The amount of resistance so interconnected varies inversely to the amount of pressure exerted.
Abstract:
The invention relates to a keyboard having sudden trip tactile effect keys.Such a keyboard comprises a flexible and conducting foil stamped with protuberances, each of them having a central upper flat part, with an area less than the area of the base of the protuberance, and a lateral part, connecting the central part to the base of the protuberance, and comprising or not substantially flat counter-shapes, which is deformed and touches a contact zone of a printed circuit placed therebelow, when a pressure is exerted on the central part.These keyboards find applications in remote-control boxes or else in pocket calculating machines.
Abstract:
A multi-function touch switch apparatus has a first semiconductor composition layer disposed on top of a first conductor layer which is affixed to a first base member. A second semiconductor composition layer opposing the first semiconductor in spaced relationship thereto is disposed on a second conductor layer which is itself disposed on the bottom surface of a second support member. A third conductor layer is also disposed on the top surface of the second support member in opposing spaced-apart relationship to a fourth conductor layer disposed on the bottom surface of a third support member. The second and third support members and the affixed conductor layers and semiconductor layers are resiliently deformable in a transverse axis in response to a transverse touch force to thereby cause electrical contact between the second and third conductor layers to provide a closed switch and the first and second semiconductor layers to provide a closed switch in series with a pressure sensitive resistance.
Abstract:
The disclosure relates generally to key assemblies employed in electrical switch operating keyboard devices and more particularly to the assembly of parts forming an individual depressible key of such a keyboard. Each key assembly is composed of parts cooperatively interfitting to provide both a low profile for the keyboard as well as a bifurcated electrical contact provision. Included in each key assembly is a pair of coiled springs of different diameters which are coaxially and overlappingly related to one another. The smaller diameter spring of the pair is a double rate spring and as such is formed with two longitudinal sections of different helical pitches for conveying forces employed to depress the key to the switch associated with the assembly to effect closure of the same, as well as for substantially reducing if not eliminating a detrimental contact ''''bounce'''' encountered in the operation of such assemblies. The force transmitting spring member acts through a terminal member shaped to provide a teetering motion in conjunction with the desired bifurcated action for assuring closure of the contacts. The assembly is composed of parts formed mainly of plastic material molded to shape and as such provides a durable, light-weight, and low cost structure.
Abstract:
Some embodiments of the present disclosure relate to a relay capable of preventing a chattering phenomenon, and capable of solving an unbalanced contact state occurring when contacts come in contact with each other.The relay may include: a stationary contact having a first stationary contact and a second stationary contact; a movable contact moveable to a first position to contact the first stationary contact, and a second position to be separated from the first stationary contact; a conductive connector configured to always electrically connect the movable contact with the second stationary contact; and a driving mechanism configured to provide a driving force to the movable contact such that the movable contact is moveable to the first position or the second position.