Abstract:
A system that incorporates aspects of the subject disclosure may perform operations including, for example, obtaining uplink information associated with a plurality of communication devices transmitting wireless signals on a plurality of uplink paths, performing, based on the uplink information, a plurality of measurements of the plurality of uplink paths, identifying a measurement from the plurality of measurements that is below a threshold, and initiating a corrective action to improve a measurement of an affected uplink path of the plurality of uplink paths based on the identifying. Other embodiments are disclosed.
Abstract:
A method that incorporates aspects of the subject disclosure may include, for example, obtaining, by a system comprising a processor, interference information associated with one or more physical resource blocks (PRBs) from each base station of a plurality of base stations. Further, the method can include determining, by the system, from the interference information a strategy for improving a PRB utilization of a first base station of the plurality of base stations. In addition, the method can include conveying, by the system, the strategy to at least one base station of the plurality of base stations. Other embodiments are disclosed.
Abstract:
A data processor selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. The data processor selects a set of QBOC correlations in accordance with a QBOC correlation function for the sampling period if the secondary amplitude exceeds the primary amplitude for the sampling period. The data processor uses either the BOC correlation function or the QBOC correlation function, whichever with greater amplitude, at each sampling period to provide an aggregate correlation function that supports unambiguous code acquisition of the received signal.
Abstract:
A transmitting apparatus includes an OFDM modulator that generates a first modulation symbol by modulating a first information signal using a first modulation scheme, a signal point of the first modulated information signal being arranged at a first position in an in-phase quadrature-phase plane and a second modulation symbol by modulating a second information signal using the first modulation scheme, and by changing a second position at which a signal point of the modulated second information signal is arranged to a third position in the in-phase quadrature-phase plane, wherein the third position is different from the first position. An OFDM modulation signal includes the first modulation symbol and the second modulation symbol, wherein the OFDM modulation signal comprises a plurality of subcarriers. A transmitter transmits the OFDM modulation signal.
Abstract:
A data processor selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. An electronic data processor determines whether the receiver is operating in a steady-state mode by evaluating the detected primary amplitude. The data processor selects and/or processes a set of BOC correlations for the sampling period to track a carrier of the received composite signal if the receiver is operating in the steady-state mode. In one embodiment, the data processor forms a first code error using the selected BOC correlations with a first chip spacing to drive the code tracking.
Abstract:
A communication apparatus includes a Doppler shift amount calculation unit configured to calculate a Doppler shift amount of a reception signal which is received from an artificial satellite and is obtained by modulating a signal, for which spectrum spreading is performed by using a predetermined spread code, by a predetermined carrier frequency, a sampling interval setting unit configured to set a sampling interval, at which down sampling is performed for the reception signal, a down sampling unit configured to perform the down sampling for the reception signal, a coherent addition unit configured to perform coherent addition of the reception signal, a spread code generation unit configured to generate a spread code, and a phase detection unit configured to perform correlation calculation between a calculation result of the coherent addition and the spread code and detects a phase of the spread code of the reception signal.
Abstract:
A transmitting apparatus includes an OFDM modulator that generates a first modulation symbol by modulating a first information signal using a first modulation scheme, a signal point of the first modulated information signal being at a first position in an in-phase quadrature-phase plane. A second modulation symbol by modulating a second information signal using the first modulation scheme, and by changing a second position at which a signal point of the modulated second information signal is arranged to a third position in the in-phase quadrature-phase plane, and an OFDM modulation signal including the first modulation symbol and the second modulation symbol, wherein the OFDM modulation signal comprises a plurality of subcarriers.
Abstract:
A data processor selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. The data processor selects a set of QBOC correlations in accordance with a QBOC correlation function for the sampling period if the secondary amplitude exceeds the primary amplitude for the sampling period. The data processor uses either the BOC correlation function or the QBOC correlation function, whichever with greater amplitude, at each sampling period to provide an aggregate correlation function that supports unambiguous code acquisition of the received signal.
Abstract:
A data processor (192) selects a set of BOC correlations in accordance with a BOC correlation function for the sampling period if the primary amplitude exceeds or equals the secondary amplitude for the sampling period. The data processor (192) selects a set of QBOC correlations in accordance with a QBOC correlation function for the sampling period if the secondary amplitude exceeds the primary amplitude for the sampling period. The data processor (192) uses either the BOC correlation function or the QBOC correlation function, whichever with greater amplitude, at each sampling period to provide an aggregate correlation function that supports unambiguous code acquisition of the received signal.