Abstract:
Apparatus and methods to optimize ultra-wideband communication through wire and cable media are provided. One apparatus comprises an ultra-wideband transmitter structured to transmit a training set of ultra-wideband pulses through the wire medium. An ultra-wideband receiver is structured to receive the training set of ultra-wideband pulses from the wire medium. A determination of which of the pulses within the training set is best suited for communication through the media is then performed. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Abstract:
An embodiment of the present invention relates to an ultra low power wideband asynchronous binary phase shift keying (BPSK) demodulation method and a circuit configuration thereof. The ultra low power wideband asynchronous BPSK demodulation circuit comprises a sideband division and upper sideband signal delay unit dividing a modulated signal into an upper sideband and a lower sideband by a first order high-pass filter and a first order low-pass filter; a data demodulation unit latching, through a hysteresis circuit, a signal generated by a difference between the analog signals in which a phase difference between the delayed upper sideband analog signal and the lower sideband analog signal is aligned at 0°, so as to demodulate digital data; and a data clock recovery unit for generating a data clock by using a signal digitalized from the lower sideband analog signal through a comparator and a data signal.
Abstract:
A method (1300) is provided for generating one or more waveforms (130, 140). The method includes: generating a first toggle signal (1130, 1330) in response to a clock signal (1110), the first toggle signal having one of a first positive shape, a null shape, and a first negative shape for each cycle of the clock signal; multiplying the first toggle signal by a first coefficient signal to create a first intermediate signal (1440); generating a second toggle signal (1140, 1330) in response to the clock signal, the second toggle signal having one of a second positive shape, the null shape, and a second negative shape for each cycle of the clock signal; multiplying the second toggle signal by a second coefficient signal to create a second intermediate signal (1440); and generating a first output signal (1170) by adding the first intermediate signal and the second intermediate signal together (1350).
Abstract:
Apparatus and methods to optimize ultra-wideband communication through wire and cable media are provided. One apparatus comprises an ultra-wideband transmitter structured to transmit a training set of ultra-wideband pulses through the wire medium. An ultra-wideband receiver is structured to receive the training set of ultra-wideband pulses from the wire medium. A determination of which of the pulses within the training set is best suited for communication through the media is then performed. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the subject matter of the disclosure contained herein. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Abstract:
An ultra-wideband wireless information transmission method comprising transmitting electromagnetic data pulses and reference pulses over the transmission medium, information being encoded as a time shift between the data pulses and the reference pulses, at least two of the data pulses sharing a common reference pulse, and receiving the data and reference pulses and using the associated timing information to recover said information.
Abstract:
An ultra-wideband (UWB) communications system combines the techniques of a transmitted reference (TR) and a multiple access scheme called delay hopping (DH). Combining these two techniques using UWB signaling results in a penalty in signal-to-noise ratio (SNR) over conventional pulse position modulation (PPM) techniques but avoids the synchronization difficulties associated with conventional approaches. The signaling pulse waveforms are designed to insure that their power spectral densities, after any frequency translation to the center of an operating band, are essentially spectrally disjoint with frequencies that must be protected. This TR technique is combined with the DH multiple access technique to create a UWB communications scheme that has a greater multiple access capacity than does the UWB TR technique by itself.
Abstract:
A multiple access technique for a wireless communication system establishes separate channels by defining different time intervals for different channels. In a transmitted reference system different delay periods may be defined between transmitted reference pulses and associated data pulses for different channels. In addition, a multiple access technique may employ a common reference pulse for multiple channels in a transmitted reference system. Another multiple access technique assigns different pulse repetition periods to different channels. One or more of these techniques may be employed in an ultra-wide band system.
Abstract:
An RF transmitter includes a reference signal generator, a signal generator, and a mixer. The reference signal generator provides a reference signal that has a prescribed or desired frequency. The signal generator provides an operating signal in response to a selection signal. The operating signal has a frequncy that equals the frequency of the reference signal multiplied by a number. The mixer mixes the operting signal with another signal to generate a transmission signal. An RF receiver includes a first mixer, a second mixer, an integrator/sampler, and a signal generator. The first mixer receives as its inputs an input RF signal and a second input signal, and mixes its input signals to genrate a mixed signal. The integrator/sampler receives the mixed signal and processes it to provde an output signal. The integrator/sampler receives the mixed signal and processes it to provide an output signal. The signal generator provides an operating signal in response to a selection signal. The operating signal has a frequency equal to the frequency of a reference signal, multiplied by a number. The second mixer mixes the operating signal with a template signal to generate the second input signal of the first mixer.
Abstract:
An RF transmitter includes a reference signal generator, a signal generator, and a mixer. The reference signal generator provides a reference signal that has a prescribed or desired frequency. The signal generator provides an operating signal in response to a selection signal. The operating signal has a frequncy that equals the frequency of the reference signal multiplied by a number. The mixer mixes the operting signal with another signal to generate a transmission signal. An RF receiver includes a first mixer, a second mixer, an integrator/sampler, and a signal generator. The first mixer receives as its inputs an input RF signal and a second input signal, and mixes its input signals to genrate a mixed signal. The integrator/sampler receives the mixed signal and processes it to provde an output signal. The integrator/sampler receives the mixed signal and processes it to provide an output signal. The signal generator provides an operating signal in response to a selection signal. The operating signal has a frequency equal to the frequency of a reference signal, multiplied by a number. The second mixer mixes the operating signal with a template signal to generate the second input signal of the first mixer.