Abstract:
A system for reading out X-ray information stored in a phosphor layer, includes: a read-out unit having components for irradiating the phosphor layer with stimulation radiation which can stimulate the phosphor layer to emit emission radiation dependent upon the X-ray information contained in the phosphor layer, and for collecting the emission radiation stimulated in the phosphor layer; and a carrier onto which the read-out unit is mounted. At least one of the components of the read-out unit is mounted onto the carrier over at least one first bearing which has a translatory degree of freedom in a first direction. The first bearing enables movement of the at least one component in relation to the carrier in the first direction.
Abstract:
An image forming apparatus includes a plurality of image forming stations each having an image carrier and forming an image on the image carrier; a mark detecting unit for detecting a plurality of registration correction marks formed on a recording medium by the plurality of image forming stations; a correction mechanism for correcting a position difference between images formed by the plurality of image forming stations in accordance with a detection result by the mark detecting unit; and a controller for independently controlling an image forming operation of each of the plurality of the image forming stations so that the image density of each of the registration correction marks formed by the plurality of image forming units has a different predetermined image density.
Abstract:
The present invention provides an image input apparatus. The image input apparatus includes a board having an image sensor; a supporting member having a first supporting portion and a second supporting portion; a first fastening member; and a second fastening member. The image input apparatus is characterized in that the board is rigidly secured on the first supporting portion of the supporting member with the first fastening member installed in the first supporting portion, and the board is movably supported on the second supporting portion of the supporting member by the second fastening member installed in the second supporting portion.
Abstract:
The invention provides an image reading apparatus structured such that two or more line image sensors are arranged in a main scanning direction, in which it is possible to securely restrict a position shift of an image reading area caused by a line image sensor, thereby performing an image reading operation at a high quality. In the image reading apparatus in which the line image sensors are arranged, a marker is formed as an image in an overlapping portion of the line image sensors, the marker is read by the line image sensors themselves so as to inspect a relative position between the line image sensors and the marker with reference to a magnitude of an output thereof corresponding to a judging standard, and the positions of the line image sensors are shifted on the basis of the result, thereby preventing a position shift in a sub scanning direction from being generated.
Abstract:
An image reading device reads an image of an original mounted on an original mounting base by using an optical scanning unit which is subjected to acceleration drive along the original mounting base until a velocity according to a reading magnification is obtained and then scanned by uniform velocity drive. A stepping motor moves the optical scanning unit. A reading magnification acceptance portion accepts a reading magnification of an image of the original mounted on the original mounting base. A motor drive control portion is used for control a drive electric current of the stepping motor, obliquely increases a set electric current during acceleration drive every velocity that the optical scanning unit reaches by a pulse number according to a reading magnification accepted by the reading magnification acceptance portion, and changes the set electric current value in accordance with the reading magnification so as to provide a characteristic for lowering the set electric current value at the time of shifting to uniform velocity drive. A photoelectric conversion portion converts a quantity of reflected light when the original on the original mounting base is optically scanned by the optical scanning unit moved by the stepping motor into an electrical signal.
Abstract:
A contact-type image sensor assembly including: an image sensor; a light source for illuminating an original document which has image information; an optical lens for imaging light reflected by the original document onto the image sensor; and a supporting member for supporting the image sensor, the light source and the optical lens, wherein the supporting member includes: a first supporting member for maintaining the distance from the surface of the original document and the light incidental side of the optical lens at a predetermined distance; a second supporting member disposed individually from the first supporting member and acting to maintain the distance from the light emission side of the optical lens to the light receiving side of the image sensor; and a third supporting member for supporting the first and second supporting members at predetermined positions and the third supporting member supports the first and second supporting members in this way that their positions can be adjusted.
Abstract:
A control system for an electrophotographic exposure apparatus is characterized by a film sheet transport which carries a film sheet past a first and second spaced position whereat the same portion of the film sheet is exposed to an imaging beam each having the same image information.
Abstract:
A device for inspecting a printed board has linear image sensors. The image sensors read the image of the printed board on respective image reading positions (CA0, CB0, CA1, CB1), while scanning the image. A predetermined tolerance range (RY) for image-reading positions is previously determined so that the respective image reading positions are included in the tolerance range. Image signals obtained in respective image sensors are delayed by respective delay times. The respective delay times are previously determined in proportion to the deviations between the image reading positions and a reference position (RLY1), where the reference position is defined on the rear end (EPY1) or behind the tolerance range in the scanning direction (-Y). Through the delay process, all of the image signals are corrected to compensate for the respective deviations in the image reading positions.
Abstract:
The Input system has the contiunous marks on a medium having an image or images such as characters or graphic patterns being read by the scanner. The data processor including a microcomputer reads the image and the mark scanned, and the microcomputer eliminates overlapping of the pieces of image data in accordance with the data representing the mark.
Abstract:
A scanner which converts an oversampled substrate image into a digital pixel array which may be at an arbitrary sampling frequency lower than the first sampling frequency. The scanner sensor converts the substrate image into an array of analog pixel at a first sampling frequency. Preferably the first sampling frequency substantially oversamples the image from the actual frequency desired in the final digital image. The analog pixels are converted into a first array of digital pixels. The first digital pixel array is converted by a sinc filter in the linear lumen domain, i.e. the digital pixels are linearly representative of the brightness of light sensed by the sensor, to a second array of pixels at a second sampling frequency. The second sampling frequency should be much lower than the first sampling frequency to produce high quality images with substantially fewer pixels than required by the prior art.