Abstract:
An electronic device includes a carriage on which an image sensor is mounted, a motor that drives the carriage, and servo-control-containing printed matter provided in one or more detection areas of the image sensor or one or more independently provided optical sensors. The servo control information is used for speed control and initial position detection of the carriage. A servo controller performs the servo control on the motor via a motor driver based on the read servo control information. The printed matter is provided on a rear or underside surface of a support structure in areas irradiated by a light source for the image sensor. Printed matter for speed control may be provided in one area and printed matter for initial position detection in another. Servo control information on the printed matter may be read using a dummy pixel region of the image sensor.
Abstract:
A recording head (16) is operated to form a regular pattern of image swaths on a recording media (17). The regular pattern of image features comprises a first set of image features (60A) that is formed with an imaging parameter set to a first predetermined value and a second set of image features (60B) is formed with an imaging parameter set to a second predetermined value, different from the first predetermined value. Image features in the first set and the second set are arranged on the recording media with a sub-scan spatial frequency equal to a non-integer multiple of a sub-scan spatial frequency of the image swaths. A scanner (40) generates data (47) of the scanned pattern, wherein a first integer multiple of a sampling spatial frequency employed by the scanner is equal to a second integer multiple of the sub-scan spatial frequency of the first set and the second set of image features. The data is analyzed to determine a quantified value representative of banding between the first set of and the second set of image features are adjusted.
Abstract:
A recording head (16) is operated to form a regular pattern of image swaths on a recording media (17). The regular pattern of image features comprises a first set of image features (60A) that is formed with an imaging parameter set to a first predetermined value and a second set of image features (60B) is formed with an imaging parameter set to a second predetermined value, different from the first predetermined value. Image features in the first set and the second set are arranged on the recording media with a sub-scan spatial frequency equal to a non-integer multiple of a sub-scan spatial frequency of the image swaths. A scanner (40) generates data (47) of the scanned pattern, wherein a first integer multiple of a sampling spatial frequency employed by the scanner is equal to a second integer multiple of the sub-scan spatial frequency of the first set and the second set of image features. The data is analyzed to determine a quantified value representative of banding between the first set of and the second set of image features are adjusted.
Abstract:
A scanning apparatus includes a stage glass (20) on which a document is loaded, a scanning head (30) which reciprocates between a home position of the stage glass (20) and a finish position opposite to the home position to read the document and generate image data, a position detection part (21) disposed in or on the stage glass (20) along a moving direction of the scanning head (30), a head position sensing part (35) disposed in the scanning head (30) which senses the position detection part (21) to sense the position of the scanning head (30) when a scanning signal is inputted, and a controlling part (70) to control the scanning head (30) so that the scanning head (30) moves to the home position at a faster speed than a predetermined reference speed if the scanning head (30) is distanced farther from the home position than a predetermined distance. Thus, the scanning apparatus, a driving method therefor and an image forming apparatus having the same control a speed with which a scanning head (30) moves to a home position according to the position of the scanning head (30).
Abstract:
A scanning apparatus (100) including a movable scan carriage (220) for scanning an original document (102) to obtain a digitized representation thereof. A CCD sensor array (234), disposed within the scan carriage, is used in conjunction with a linear encoder (2112) to determine the position of the scan carriage during scanning.
Abstract:
A scanner converts an image, for example from a film, paper, or slide, into a set of digital pixel values. A reference pattern 464, 466 is disposed to one side of the image. The scanning means, e.g., a CCD array sensor 39 simultaneously scans lines of the image and the reference pattern as the image is moved relative to the scanning means. The scanner contains software and/or hardware for interpreting the sensed portion of the reference pattern as a position, which can then be associated with the raw scan line of the image which was sensed at the same time as the sensed portion of the reference pattern. This position information can be used to scale the pixels from their raw values onto a specified output grid. Typically, the raw scan lines are prescaled between a raw resolution between scan lines as they are received from the sensor to an intermediate resolution between scan lines. Next the prescaled lines are scaled cross-wise (ie parallel to the scan line), and then length-wise, to locate the pixels onto the chosen output grid. The scaling may be performed in the linear lumen domain using a sinc filter. Typically the raw image data is oversampled, and at a higher sampling frequency than the specified output grid.
Abstract:
A recording head (16) is operated to form a regular pattern of image swaths on a recording media (17). The regular pattern of image features comprises a first set of image features (60A) that is formed with an imaging parameter set to a first predetermined value and a second set of image features (60B) is formed with an imaging parameter set to a second predetermined value, different from the first predetermined value. Image features in the first set and the second set are arranged on the recording media with a sub-scan spatial frequency equal to a non-integer multiple of a sub-scan spatial frequency of the image swaths. A scanner (40) generates data (47) of the scanned pattern, wherein a first integer multiple of a sampling spatial frequency employed by the scanner is equal to a second integer multiple of the sub-scan spatial frequency of the first set and the second set of image features. The data is analyzed to determine a quantified value representative of banding between the first set of and the second set of image features are adjusted.
Abstract:
A recording head (16) is operated to form a regular pattern of image swaths on a recording media (17). The regular pattern of image features comprises a first set of image features (60A) that is formed with an imaging parameter set to a first predetermined value and a second set of image features (60B) is formed with an imaging parameter set to a second predetermined value, different from the first predetermined value. Image features in the first set and the second set are arranged on the recording media with a sub-scan spatial frequency equal to a non-integer multiple of a sub-scan spatial frequency of the image swaths. A scanner (40) generates data (47) of the scanned pattern, wherein a first integer multiple of a sampling spatial frequency employed by the scanner is equal to a second integer multiple of the sub-scan spatial frequency of the first set and the second set of image features. The data is analyzed to determine a quantified value representative of banding between the first set of and the second set of image features are adjusted.
Abstract:
An image reading apparatus includes a reading unit, a control unit, and a pattern region. The reading unit moves a linear reading range, which is provided in a main scanning direction, in a sub-scanning direction that intersects with the main scanning direction while reading an object that faces the reading range, and generates image data on the basis of a read result. The control unit controls the reading unit. The pattern region includes a predetermined pattern that defines a reference position for specifying a reading position that is read by the reading unit. The predetermined pattern has a characteristic portion that specifies a schematic position of the predetermined pattern in the sub-scanning direction. The control unit includes a first image acquisition unit, a pattern searching unit, a second image acquisition unit, a characteristic portion searching unit, a first reprocessing instruction unit, and a second reprocessing instruction unit.
Abstract:
A full-zone optical image addressing apparatus, including an addressing device, an image extraction converter, a comparator, an AND gate and a counter. The addressing device is located at the enclosure of the scanner and includes a plurality of geometric patterns. Each of the geometric patterns includes a plurality of rows of pixels. While receiving an exposure signal, the image extraction converter extracts one row of pixels from the addressing device, such that a series of analog signals is obtained and output to the comparator. The comparator then compares the series of analog signals to an analog critical voltage to output a series of analog comparison signals to the AND gate. The AND gate synchronously processes the series of analog comparison signals and a pixel rate clock to output the pixel data corresponding to the extracted row of pixels to the counter. After receiving the synchronously processed pixel value from the AND gate, the counter calculates and outputs the extracted row of pixels, including the amount of pixels and the geometric patterns in the row of pixels.