Abstract:
A tipless arc tube for a high intensity discharge lamp and method of manufacture wherein the arc tube may remain open to an uncontrolled atmosphere during the step of hermetically sealing the arc tube. The novel arc tube and method obviate the need to perform any process steps within a controlled atmosphere. The pressure of the fill gas sealed within the arc tube may be controlled by controlling the temperature of the fill gas during the step of hermetically sealing the arc tube. The novel arc tube and method obviate the need to use a pump to control the fill gas pressure.
Abstract:
In manufacturing an organic electroluminescence device including a plurality of layers sequentially laminated on a substrate, the plurality of layers are laminated at a film formation portion on the substrate by varying the relative positions of the substrate on which to perform film formation and a plurality of vapor sources arranged side by side so that the substrate passes sequentially through positions corresponding to the plurality of vapor sources.
Abstract:
A baking system for a plasma display panel which comprises a clean room 1 and a baking furnace having an upper passage 11 for conveying a plasma display panel glass substrate 5 during baking from an inlet 15 of the furnace 3, and a lower passage 13 for conveying the baked substrate 5 in the upper passage 11 towards an outlet of the furnace 3, both of the inlet and the outlet being provided at the same end of the furnace 3, characterized in that only the inlet 15 and the outlet 17 are connected to a clean room 1, while keeping a body thereof outside the clean room 1. Also, there is disclosed a layout method for such a baking system.
Abstract:
A surface treatment process for fabricating a panel of an organic light emitting device is disclosed. The surface treatment process for fabricating a panel of an organic light emitting device comprises following steps: forming on a substrate a plurality of first electrodes; forming a plurality of ramparts having T-shape cross-section on said substrate and selectively on said first electrodes through coating positive chemically amplified photoresist compositions having photo-acid generators on said substrate, exposing coated substrate to UV radiation to form latent pattern, post-exposure surface treating said photoresist on said substrate in a alkaline atmosphere and developing said photoresist; wherein each rampart protruding from said substrate and having an overhanging portion projecting in a direction parallel to said substrate; depositing organic electroluminescent media to the exposed area between said ramparts on said substrate; forming a plurality of second electrodes on said organic electroluminescent media on said substrate.
Abstract:
A flat display panel has a ventilation hole formed in a back glass substrate facing a front glass substrate with a space in between, and provides communication between the space and the exterior. A ventilation duct is connected to the ventilation hole and secured with a pressed frit to the outer face of the back glass substrate. The ventilation duct has a flange formed at one end thereof connected with the back glass substrate. The pressed frit having a ventilation hole is sandwiched between the flange and the back glass substrate, and fused to the flange and the back glass substrate in order for the ventilation duct to be secured to the back glass substrate.
Abstract:
A display having improved thermal management and a method for producing the display are disclosed. The display includes a pixel structure adjacent a front panel with thermo-mechanical elements extending between a back panel and the pixel structure to dissipate heat generated by the pixel structure.
Abstract:
An organic electroluminescence device having an anode structure on the lower surface which is effective for taking out light efficiently from the cathode on the upper surface in which the organic electroluminescence device comprises an anode, a cathode and an organic layer put between both of them. The organic layer contains an organic light emitting layer that emits light by re-combination of holes supplied from the cathode A and electrons supplied from the cathode. The cathode comprises a laminate structure of an electron injecting metal layer, and a transparent conductive layer ultra thin film which is basically light permeable. The anode contains a metal belonging to the group V or group VI of the periodical table to at least a portion in contact with the organic layer and is basically light reflective. The anode metal is selected from chromium, molybdenum, tungsten, tantalum and niobium. The anode metal has a work function of 4.8 eV or lower.
Abstract:
The invention provides a method enabling a display material including display elements introduced into divided regions with partition walls to be reclaimed, and a method for manufacturing a display using the method. The color filter substrate is immersed in a developer in the step for reclaiming the base. Alkali can be used as the developer that is capable of being used in the development process for forming the partition walls. The developer is not required to be the actual developer that is used for forming the partition walls. Vibration or stress is applied to the filter element as a display element using an ultrasonic cleaning bath in the step for immersing the base in the developer, and the filter element as a display element is peeled off. The base is washed with water thereafter, followed by drying to return the base to the color filter substrate forming step.
Abstract:
A process of efficiently transforming polymer films arranged on an electron source substrate into carbon films is provided. A light is irradiated onto a region of the substrate where a plurality of polymer films, associated electrodes and part of wirings are arranged so that the plurality of polymer films are simultaneously transformed into lower resistance films such as carbon films through heating by the irradiated light, wherein for the irradiating light, a light absorptance of the wirings is lower than that of the electrodes.
Abstract:
A system and method for manufacturing a product from a plurality of parts based on the result of an event includes designing each of a first group of the plurality of parts with a generic design and designing each of a second group of the plurality of parts with a customized design. Each of the second group of parts has at least two versions of the customized design. The first group of parts is manufactured into a partially completed product, and the second group of parts is manufactured separately. After receiving a result of the event, the manufacture of the product is completed with the partially completed product and the second group of parts designed with a version consistent with the result of the event.