Abstract:
A cooling system for a gantry of a computer tomography system which has a gantry supporting an x-ray source being positioned in a gantry housing and being rotatable around a rotation axis, the gantry housing being positioned by at least one bearing on a stationary part of the computer housing so that it can be moved relative to the housing. The cooling system comprises a cooling gas supply arrangement or device directing a cooling gas flow in the region of at least one bearing between the stationary part and the gantry housing.
Abstract:
A cooling system including an X-ray tube, a cooling source, and a conduit carrying a fluid. The conduit has a first section disposed to extract heat from the X-ray tube and a second section disposed to have heat extracted by the cooling source. The X-ray tube heats the first section such that the fluid is evaporated from a liquid fluid into a gas fluid. The gas fluid flows from the first section to the second section to achieve equilibrium. The heat from the evaporated gas fluid is extracted from the conduit at the second section by the cooling source. The cooling source cools the second section such that the evaporated gas fluid condenses to liquid fluid. The liquid fluid is moved to the first section of the conduit by the gas fluid flowing from the first section to the second section.
Abstract:
A computed tomography (nullCTnull) gantry cooling system including a gantry housing defining a gantry chamber, wherein the gantry housing includes a lower portion, an upper portion, and a gantry cover disposed adjacent to the upper portion of the gantry housing. The CT gantry cooling system also including a fan disposed within the gantry cover of the gantry housing, wherein the fan is operable for forcing cooling air into the gantry chamber and creating a positive pressure within the gantry chamber. The CT gantry cooling system further including a vent disposed within the gantry cover of the gantry housing, wherein the vent is operable for exhausting heated air from the gantry chamber.
Abstract:
A bearing assembly for the rotational mounting of a rotary anode of an X-ray emitting device on a support having at least one rolling bearing provided in order to be placed between the rotary anode and the support, the rolling bearing having a rotating ring, a non-rotating ring, and rolling elements placed between raceways of the first ring and of the second ring. At least one sleeve is intended to be mounted between an axially stressed ring of the rolling bearing and a cylindrical bearing surface of the anode or of the support, the sleeve being radially elastic in order to compensate for variations in radial dimensions between the ring and the cylindrical bearing surface, and in order to dampen the vibration, while at the same time being suitable for allowing the ring to slide axially with respect to the cylindrical bearing surface.
Abstract:
A system and method for improving cooling of a heat-generating component in a closed-loop cooling system is shown. The system comprises a venturi having a throat which is coupled to an expansion tank that may be exposed to atmospheric pressure in the embodiment being described. A closed expansion tank may be provided in the system to force or continue to cause fluid flow to cool the heat-generating component after a pump stops.
Abstract:
A rotating anode for an x-ray tube has an anode body having a target surface with a focal ring, supported by a bearing system. The anode body is composed of composite fiber material with fibers exhibiting an especially high heat-conductivity, as well as a high mechanical strength.
Abstract:
A cooling system for use with high-power x-ray tubes. The cooling system includes a dielectric coolant disposed in the x-ray tube housing so as to absorb heat dissipated by the stator and other electrical components, as well as absorbing some heat from the x-ray tube itself. To improve heat absorption from the stator and the x-ray tube, the dielectric coolant is circulated throughout the housing by a circulating pump. The cooling system also includes a coolant circuit employing a pressurized water/glycol solution as a coolant. Pressurization of the water/glycol solution is achieved by way of an accumulator which, by pressurizing the coolant to a desired level, raises its boiling point and capacity to absorb heat. A coolant pump circulates the pressurized coolant through a fluid passageway defined in an aperture of the x-ray tube and through a target cooling block disposed proximate to the x-ray tube in the x-ray tube housing, so as to position the coolant to absorb some of the heat generated at the aperture by secondary electrons, and the heat generated in the target cooling block by the target anode of the x-ray tube. The target cooling block is in contact with the dielectric fluid so that some of the heat absorbed by the dielectric coolant is transferred to the coolant flowing through the target cooling block. The heated coolant is then passed through an air/water radiator where a flow of air serves to remove some heat from the coolant. Thus cooled, the coolant then exits the radiator to repeat the cycle.
Abstract:
An x-ray generating device or system includes an anode assembly including a target; a cathode assembly disposed at a distance from the anode assembly, the cathode assembly configured to emit electrons that strike the target of the anode assembly, producing x-rays and residual energy; a heat receptor, positioned between the anode assembly and a bearing assembly supporting the anode assembly, for absorbing an amount of the residual energy; and a heat exchanger, in thermal communication with the heat receptor, for carrying a cooling medium and conducting an amount of the residual energy absorbed by the heat receptor away from the heat receptor.
Abstract:
The invention relates to an X-ray examination apparatus in which the X-ray detector 1 and the X-ray source 2 are subject to keeping the temperature constant and to cooling by way of a common cooling circuit. To this end, a cooling medium of constant temperature is applied to the X-ray detector 1 in order to make the X-ray detector 1 operate at uniform ambient temperatures. The temperature of the cooling medium, thus increased a first time, still suffices to perform cooling of the X-ray source 2. Consequently, the heated cooling medium, after application to the X-ray detector 1, is applied to the X-ray source 2 where a second exchange of heat takes place, so that at the same time the X-ray source 2 is cooled without utilizing an additional cooling circuit. This offers the advantage that relevant X-ray examination apparatus may have a simple construction, that the electronic components used in the construction have a correspondingly prolonged service life due to the constant low temperature, and that the apparatus can operate with a higher mean power as a result of the cooling.