Abstract:
A process for the in situ blending of polymers comprising continuously contacting, under polymerization conditions, a mixture of ethylene and at least one alpha-olefin having at least 3 carbon atoms with a catalyst in at least two fluidized bed reactors connected in series, said catalyst comprising: (i) a complex consisting essentially of magnesium,titanium, a halogen, and an electron donor; (ii) at least one activator compound for the complex having the formula AlR˝ e X′ f H g wherein X′ is Cl or OR‴; R˝ and R‴ are saturated aliphatic hydrocarbon radicals having 1 to 14 carbon atoms and are alike or different; f is 0 to 1.5; g is 0 or 1; and e + f + g = 3; and (iii) a hydrocarbyl aluminum cocatalyst, the polymerization conditions being such that ethylene copolymer having a high melt index in the range of about 0.1 to about 1000 grams per 10 minutes is formed in at least one reactor and ethylene copolymer having a low melt index in the range of about 0.001 to about 1.0 gram per 10 minutes is formed in at least one other reactor, each copolymer having a density of about 0.860 to about 0.965 gram per cubic centimeter and a melt flow ratio in the range of about 20 to about 70, and being admixed with active catalyst, with the proviso that: (a) the misture of copolymer of ethylene and active catalyst formed in one reactor in the series is transferred to the immediately succeeding reactor in the series; (b) in the reactor in which the low melt index copolymer is made: (1) the alpha-olefin is present in a ratio of about 0.02 to about 3.5 mole of alpha-olefin per mole of ethylene; and (2) hydrogen is optionally present in a ratio of about 0.001 to about 0.5 mole of hydrogen per mole of combined ethylene and alpha-olefin; (c) in the reactor in which the high melt index copolymer is made: (1) the alpha-olefin is present in a ratio of about 0.02 to about 3.5 mole of alpha-olefin per mole of ethylene; and (2) hydrogen is present in a ratio of about 0.05 to about 3 moles of hydrogen per mole of combined ethylene and alpha-olefin; and (d) additional hydrocarbyl aluminum cocatalyst is introduced into each reactor in the series following the first reactor in an amount sufficient to restore the level of the activity of the catalyst transferred from the preceding reactor in the series to about the initial level of activity in the first reactor.
Abstract:
A method for inhibiting polymer build-up in a heat exchanger during the gas phase polymerization of alpha-olefins which comprises introducing upstream of the heat exchanger para ethyl ethoxybenzoate in an amount sufficient to inhibit polymer build-up.
Abstract:
Solutes are obtained from liquid menstrua by bubbling gas through the liquid menstrua wherein solute passes to the interface between the bubble and the liquid menstrum and/or into the gas within the bubble. The bubble breaks the surface of the liquid menstruum and defines an entrainment zone which is subjected to electromagnetic radiation to maintain solute in the vapor space. The recovered solute may, for instance, be subjected to analytical analysis.
Abstract:
A process for producing a polymer crosslinkable by exposure to moisture in the presence of a hydrolysis/condensation catalyst comprising blending (i) a thermoplastic base polymer, (ii) a solid carrier polymer containing a silane, and (iii) a free radical generator; heating and mixing (i), (ii) and (iii) together at a temperature above the crystalline melting point of said base polymer; optionally, a free-radical generator, hydrolysis/condensation catalyst, and other additives are contained in the solid carrier polymer.
Abstract:
Process of making amines by inter alia the (i) intramolecular condensation of an amino compound to an amine having a lower molecular weight or (ii) the intermolecular condensation of an amino compound with one or more of another amino compound or a compound containing an alcoholic hydroxyl group using a Group IVB metal oxide condensation catalyst. The preferred process involves the manufacture of alkyleneamines, most desirably polyalkylenepolyamines, by such condensation reactions utilizing catalysts containing titanium oxide, zirconium oxide or mixtures of them.
Abstract:
This invention relates to a process for making amines by condensing an amino compound in the presence of a condensation catalyst and a condensation catalyst promoter, wherein said condensation catalyst promoter is present in an amount sufficient to promote the condensation catalyst. This invention also relates to an alkyleneamines producers composition rich in triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and pentaethylenehexamine (PEHA).
Abstract:
Oxidative coupling of lower alkane to higher hydrocarbon is conducted using supported catalyst comprising at least one of barium hydroxide, strontium hydroxide, barium and strontium carbonate in the presence of halogen component. High yields of higher hydrocarbon can be achieved with long catalyst life.
Abstract:
Certain dimethylamino alkyleneoxy isopropanols obtained by propoxylation of dimethylamino alkanols and ethers is used as a catalyst for preparing polyurethane foam.
Abstract:
This invention relates to vicinal di(hetero)alkylene organometalate compounds comprising one or more metal oxides in association with an alkanolamine, an alkyleneamine, an alkylene glycol or mixtures thereof. This invention also relates to an alkyleneamines producers composition rich in triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and pentaethylenehexamine (PEHA), and to processes for the preparation thereof using the vicinal di(hetero)alkylene organometalates.
Abstract:
A water tree resistant composition comprising:
(a) a copolymer of at least the two comonomers, ethylene and 4-methyl-1-pentene, said copolymer having a density no greater than about 0.920 gram per cubic centimeter; or (b) a copolymer of at least the two comonomers, ethylene and 1-octene, said copolymer having a density no greater than about 0.920 gram per cubic centimeter; or (c) the copolymer of (a) or (b) grafted with a hydrolyzable vinyl silane, the copolymers of (a) and (b) being produced by contacting the relevant comonomers, under polymerization conditions, with (i) a catalyst system containing a catalyst precursor comprising magnesium, titanium, a halogen, and an electron donor, and a hydrocarbyl aluminum cocatalyst or (ii) a catalyst system containing a catalyst precursor comprising vanadium an electron donor, and a hydrocarbyl aluminum halide; a hydrocarbyl aluminum cocatalyst; and a halogen substituted lower alkane promoter.