Abstract:
Embodiments of the invention relate to a hydroprocessing catalyst including (i) one or more hydrogenation metal components selected from a group consisting of a VIB group metal, a VIIB group metal, and a VIII group metal, and (ii) an organic compound expressed by the formula: R1COCH2COR2 (wherein, R1 and R2 are the same or different from each other, and are one or more groups selected from a group consisting of C1 to C12 alkyl, C6 to C12 allyl, C1 to C12 alkoxy and hydroxy), or an organometallic compound expressed by the formula: X(R1COCH1COR2)n (wherein, X is selected from a group consisting of VIB group metal, VIIB group metal and VIII group metal, R1 and R2 are the same or different from each other, and are one or more groups selected from a group consisting of C1 to C12 alkyl, C6 to C12 allyl, C1 to C12 alkoxy and hydroxy, and n is an integer of 1 to 6).
Abstract:
Prepolymerized catalyst component for the polymerization of olefins CH2═CHR in which R is hydrogen or a hydrocarbyl radical with 1-12 carbon atoms, having average particle size equal to or lower than 30 μm comprising a solid catalyst component comprising magnesium halide, a titanium compound having at least a Ti-halogen bond and at least two electron donor compounds one of which being selected from 1,3-diethers and the other one being selected from esters of aromatic mono or dicarboxylic acids, said solid catalyst component being prepolymerized with an olefin, having from 2 to 10 carbon atoms, to such an extent that the amount of the olefin prepolymer is equal to or lower than 50 g per g of solid catalyst component.
Abstract:
A composition having a substantial or material absence of or no phosphorous and comprising a support material, a metal compound and either a hydrocarbon oil or a polar additive or a combination of both a hydrocarbon oil and polar additive. The polar additive has particularly defined properties including having a dipole moment of at least 0.45. The composition is useful in the hydroprocessing of hydrocarbon feedstocks, and it is especially useful in the hydrotreating of vacuum gas oils and petroleum resid feedstocks.
Abstract:
The invention provides superficially porous metal oxide or hybrid metal oxide monoliths with ordered pore structures. The superficially porous hybrid silica monoliths of the invention provide several major advantages over existing silica monoliths. When used in chromatography, the superficially porous hybrid silica monoliths of the invention deliver fast separation at very low back pressure and possess superb pH stability and much improved mechanical strength.
Abstract:
Provided is a catalyst composition suitable for curing a fluoroelastomer, the catalyst composition comprising an anion of Formula III: wherein each Rf independently is selected from R—CF2 and a perfluoroalkyl group having from 1 to 8 carbon atoms. R is selected from H, a halogen, an alkyl group having up to 8 carbon atoms, an aryl group having up to 8 carbon atoms, and a cycloalkyl group having up to 8 carbon atoms. The subscript n is a positive integer. The catalyst composition is free of hydrocarbon containing alcohol. In specific instances, Rf may be CF3.
Abstract:
Provided are catalyst systems, processes for polymerizing one or more olefins, polymers resulting therefrom, and articles prepared from such polymers. The processes comprise contacting under polymerization conditions one or more olefin monomers, preferably propylene, with a catalyst system comprising a transition metal compound and an activator of the formula (1) or (2) as described herein. The polymer compositions described herein exhibit advantageously narrow composition distributions and high melting points in comparison to conventional polymers having the same comonomer content. The polymers described herein exhibit improved properties, e.g., pellet stability, impact properties, heat seal properties, and structural integrity in film and fabricated parts applications.
Abstract:
Use of ionic liquids as solvents in base-catalysed chemical reactions wherein the ionic liquid is composed of at least one species of cation and at least one species of anion, characterized in that a cation of the ionic liquid comprises a positively charge moiety and a basic moiety, and further wherein such ionic liquids may be used as promoters or catalysts for the chemical reactions.
Abstract:
Provided are catalyst systems, processes for polymerizing one or more olefins, polymers resulting therefrom, and articles prepared from such polymers. The processes comprise contacting under polymerization conditions one or more olefin monomers, preferably propylene, with a catalyst system comprising a transition metal compound and an activator of the formula (1) or (2) as described herein. The polymer compositions described herein exhibit advantageously narrow composition distributions and high melting points in comparison to conventional polymers having the same comonomer content. The polymers described herein exhibit improved properties, e.g., pellet stability, impact properties, heat seal properties, and structural integrity in film and fabricated parts applications.
Abstract:
A process for the preparation of a catalyst from a catalytic precursor comprising a support based on alumina and/or silica-alumina and/or zeolite and comprising at least one element of group VIB and optionally at least one element of group VIII, by impregnation of said precursor with a solution of a C1-C4 dialkyl succinate. An impregnation step for impregnation of said precursor which is dried, calcined or regenerated, with at least one solution containing at least one carboxylic acid other than acetic acid, then maturing and drying at a temperature less than or equal to 200° C., optionally a heat treatment at a temperature lower than 350° C., followed by an impregnation step with a solution containing at least one C1-C4 dialkyl succinate followed by maturing and drying at a temperature less than 200° C. without subsequent calcination step. The catalyst is used in hydrotreatment and/or hydroconversion.
Abstract:
The present invention provides a catalyst composition for preparing an amide, including an amino acid ionic liquid having a cation of formula (I) and an anion selected from the group consisting of an inorganic acid group, an organic acid group and a combination thereof, wherein the numbers of the anion and the cation are such that the amino acid ionic liquid is electroneutral; and a Bronsted acid. The present invention also provides a method for preparing an amide in the presence of the catalyst composition, and the method has advantages such as decreasing viscosity of ionic liquid, and increasing conversion rate of ketoximes and selectivity of amides.