Abstract:
A positive displacement pump is provided that includes a pump housing having a pump chamber; a plunger mounted in the pump housing for reciprocating motion in the pump chamber; a suction valve positioned to allow a fluid to enter the pump chamber upon movement of the plunger in a first direction; a discharge valve positioned to discharge the fluid from the pump chamber upon movement of the plunger in a second direction; and at least one sensor enclosed by the pump housing for measuring at least one pump condition parameter.
Abstract:
A piston and cylinder combination driven by linear motor with cylinder position recognition system, including a support structure forming an air gap; a motor winding generating a variable magnetic flow along part of the air gap; a cylinder having a head at one end; a piston connected to a magnet, the magnet driven by the magnetic flow of the motor winding to move inside a displacement path including at least partially the air gap; the displacement of the magnet making the piston reciprocatingly move inside the cylinder; and an inductive sensor disposed at a point of the displacement path of the magnet, such that when the piston reaches a position of closest approach to the cylinder head, the inductive sensor detects a variation in the magnetic field resulting from the corresponding position of the magnet, and generates a voltage signal arising from this magnetic field variation.
Abstract:
A method for determining a piston position in a downhole tool, having steps of providing a transducer in the downhole tool, wherein the tool has a piston used to create a vacuum for the downhole tool, providing a transducer tone burst to provide acoustic energy toward the piston, reflecting the transducer tone burst by a surface of the piston, receiving the transducer tone burst at a receiver, calculating time of flight for the transducer tone burst and determining the piston position in the downhole tool based upon the calculated time of flight of the transducer tone burst.
Abstract:
One or more techniques and/or systems are disclosed for increasing compressed air efficiency in a pump utilizes an air efficiency device in order to optimize the amount of a compressed air in a pump. The air efficiency device may allow for controlling the operation of the air operated diaphragm pump by reducing the flow of compressed air supplied to the pump as the pump moves between first and second diaphragm positions. A sensor may be used to monitor velocity of the diaphragm assemblies. In turn, full position feedback is possible so that the pump self-adjusts to determine the optimum, or close to optimum, turndown point of the diaphragm assemblies. As such, air savings is achieved by minimizing the amount of required compressed air.
Abstract:
A control system and method for controlling electromagnetic drive pumps as, for example, electromagnetic driven membrane pumps are provided in which the control system is formed by at least one microprocessor and at least one sensor, whose microprocessor controls the power supply to at least one electromagnet whose changes in emitted magnetic field causes at least one moving part, directly or indirectly, to perform an oscillating pumping movement. The control system includes at least one positioning sensor which senses the moving part's position in the electromagnetic driven pump. By using the positioning sensor's measurements, the pump can be controlled with great accuracy.
Abstract:
Illustrative embodiments of diaphragm pumps having an automatic priming function, as well as related systems and methods, are disclosed. In one illustrative embodiment, a method of priming a diaphragm pump includes sensing, with a pressure sensor disposed at a fluid outlet of the diaphragm pump, a pressure of a fluid being pumped by the diaphragm pump, transmitting a pressure signal associated with the sensed pressure from the pressure sensor to a controller of the diaphragm pump, and identifying, on the controller, whether the diaphragm pump is primed by determining whether a characteristic of the pressure signal has reached a threshold.
Abstract:
A method of detecting impact or collision between a cylinder (2) and piston (1) driven by a linear motor of a gas compressor includes the steps of: i) obtainment of a reference signal (Sr) associated to an electrical output of the linear motor before the piston attains the upper dead center; ii) obtainment of a detection signal (Sd) associated to the electrical output of the linear motor after the piston attains the upper dead center; iii) comparison between the reference signal (Sr) and the detection signal (Sd); and iv) record of occurrence of impact when the result of comparison of step iii indicates that the detection signal (Sd) presents a variation deriving from impact between the cylinder and the piston, considering a pre-established tolerance. Also disclosed is an electronic detector device , a gas compressor (100) and a control system.
Abstract:
Illustrative embodiments of diaphragm pumps including a muffler-mounted sensor are disclosed. In one illustrative embodiment, a diaphragm pump includes a shaft coupled to at least one diaphragm, an exhaust chamber configured to receive a motive fluid that has driven reciprocation of the at least one diaphragm and the shaft, a muffler disposed at least partially within the exhaust chamber, the muffler having a sensor mounting chamber defined therein, and a proximity sensor disposed in the sensor mounting chamber, a sensing end of the proximity sensor being flush with an end of the sensor mounting chamber nearest the shaft.
Abstract:
Detecting a failure mode of a fluid flow controller configured to control fluid flow between first and second chambers of a downhole positive displacement pump and a flow line, wherein the positive displacement pump comprises a piston moving in an axial reciprocating motion, and subsequently adjusting operation of the downhole positive displacement pump based on the detected failure mode such that the downhole positive displacement pump piston operates differently in different axial directions.
Abstract:
Method and apparatus for controlling a moveable pumping diaphragm and a liquid color diaphragm pump, including a housing, a movable pin slidably residing within the housing, a potentiometer connected to and residing within the housing for sensing movement of the pin, riding against the diaphragm of the pump and a spring for biasing the pin against the diaphragm.