Abstract:
A boost converter control apparatus for controlling a motor drive system which is provided with a boost converter disposed between an electric power converter and a direct current power supply, the boost converter boosting a direct current voltage of the direct current power supply and supplying it to the electric power converter, is provided with: an operating device provided with a proportional element, an integral element and a derivative element, the derivative element being configured as a bandpass filter, the operating device calculating a PID controlled variable corresponding to an electric current command value of the boost converter for maintaining an output voltage of the boost converter at a command value of an inter-terminal voltage VH of a smoothing condenser; and a controlling device which is configured to control the output voltage of the boost converter on the basis of the calculated PID controlled variable.
Abstract:
An electric motor driving device that drives an electric motor including a field winding, a rotor and a stator, wherein the rotor and the stator each form a field pole by passing a field current through the field winding, includes: a power supply device; a converter including a reactor that at least partially serves as the field winding shared with the electric motor, and configured to receive a voltage from the power supply device to carry out voltage conversion between first and second power lines and to pass the field current through the field winding during voltage conversion operation; an inverter configured to convert a direct-current power received from the converter to an alternating-current power for driving the electric motor; and a controller controlling the converter so that a current flows through the field winding in the same direction both during power running and regeneration of the electric motor.
Abstract:
An electric power tool includes a power supply, a motor capable of being driven in a forward rotation mode or a reverse rotation mode, and a voltage step-up unit capable of performing a voltage step-up operation to raise a voltage supplied from the power supply and supply a raised voltage to the motor. The voltage step-up unit is configured to change the voltage step-up operation in accordance with whether a rotation mode of the motor is the forward rotation mode or the reverse rotation mode.
Abstract:
Apparatus for preventing output of an input signal is disclosed. The apparatus comprises a signal control unit comprising a signal buffering unit having an input and an output, the signal buffering unit arranged to receive an input signal and pass the input signal to the output when the signal buffering unit is powered, wherein a negative power supply terminal of the signal buffering unit is arranged to be supplied by a first power source having a voltage. The signal control unit also comprises a boost circuit arranged to boost the voltage of the first power source to a boosted voltage higher than the voltage of the first power source and supply either the voltage of the first power source or the boosted voltage to a positive power supply terminal of the signal buffering unit. The signal buffering unit is powered when the boosted voltage is supplied to the positive power supply terminal of the signal buffering unit and the signal buffering unit is not powered when voltage of the first power supply terminal is supplied to the positive power supply terminal of the signal buffering unit. Also disclosed is an apparatus for providing output voltages for driving a motor as well as a motor drive system.
Abstract:
A boost converter control apparatus for controlling a motor drive system which is provided with a boost converter disposed between an electric power converter and a direct current power supply, the boost converter boosting a direct current voltage of the direct current power supply and supplying it to the electric power converter, is provided with: an operating device provided with a proportional element, an integral element and a derivative element, the derivative element being configured as a bandpass filter, the operating device calculating a PID controlled variable corresponding to an electric current command value of the boost converter for maintaining an output voltage of the boost converter at a command value of an inter-terminal voltage VH of a smoothing condenser; and a controlling device which is configured to control the output voltage of the boost converter on the basis of the calculated PID controlled variable.
Abstract:
Disclosed is a control device which performs voltage conversion control for a voltage conversion circuit between motor control circuits which control a plurality of motors and a power supply. The control device includes sampling means for sampling a DC voltage after voltage conversion, target voltage setting means for setting target voltages of the plurality of motors, selection means for selecting a target voltage to be converted by the voltage conversion circuit from among the plurality of target voltages, generation means for generating a sampling timing on the basis of a carrier signal of one of the motors having the unselected target voltage, and control means for performing voltage conversion control using the DC voltage sampled by the sampling means in response to the sampling timing for each sampling timing request of voltage conversion control.
Abstract:
A rotating electrical machine control system includes a frequency converting portion that is interposed between a rotating electrical machine for driving a vehicle and a DC power source for supplying electric power to the rotating electrical machine, and that converts an output of the DC power source to an AC output at least during powering operation of the rotating electrical machine; a voltage converting portion that is interposed between the DC power source and the frequency converting portion, and that boosts the output of the DC power source based on a boost command value which is set according to a target torque and a rotational speed of the rotating electrical machine; and a control portion for controlling the frequency converting portion and the voltage converting portion.
Abstract:
A motor control apparatus for an electric vehicle has an AC motor system including a power conversion unit and a motor/generator. The power conversion unit performs conversion between DC power and AC power to drive the motor/generator. The motor control apparatus further includes a decoupling control section configured to perform decoupling control, which restricts interference between system voltage control and motor torque control, by correcting a control state amount of one of the system voltage control and the motor torque control by a control state amount of the other of the system voltage control and the motor torque control.
Abstract:
When power storage units and are both in a normal condition, system relays are maintained in an ON state. A converter performs a voltage conversion operation in accordance with a voltage control mode, and a converter performs a boost operation in accordance with an electric power control mode. If some kind of fault condition occurs in the power storage unit and the system relay is driven to an OFF state, the converters stop the voltage conversion operation and maintain an electrically conducting state between the power storage units and a main positive bus, a main negative bus.
Abstract:
An electric power system includes a variable speed generator driven by an engine and an electrical energy storage device. The generator and the storage device are coupled to a variable voltage DC bus. An inverter converts DC electricity from the DC bus to AC electricity for one or more electrical loads. A detector is included to monitor electric current provided to the DC bus by the storage device and provide a corresponding signal. Control circuitry is responsive to this signal to regulate power output from the storage device to the DC bus.