Abstract:
The present invention relates to a method for manufacturing a highly purified diamond. In the method, a copper powder having purity 99.8% or more and having an acid-insoluble impurity concentration at 50 ppm or less, and graphite are mixed at first. The mixture of the copper powder and graphite is loaded into a sample tube. The sample tube is placed in an explosive tube. Explosive is loaded in the surrounding of the sample tube. Graphite is shock-compressed by the detonation of the explosive to yield diamond.
Abstract:
The present invention relates to a method for manufacturing a highly purified diamond. In the method, a copper powder having purity 99.8% or more and having an acid-insoluble impurity concentration at 50 ppm or less, and graphite are mixed at first. The mixture of the copper powder and graphite is loaded into a sample tube. The sample tube is placed in an explosive tube. Explosive is loaded in the surrounding of the sample tube. Graphite is shock-compressed by the detonation of the explosive to yield diamond.
Abstract:
A method and apparatus for fabricating high density monolithic metal and oy billets. The process requires preheating precursor materials of metal or alloy billets by means of a combustion synthesis called Self-Propagating High-Temperature Synthesis (SHS). The reaction takes place in an insulated reaction vessel where the precursors, in a powder form, are heated to high temperatures. The precursors are then compacted to high density by means of pressure waves generated by detonation of an explosive. The method is capable of producing high purity tungsten and tungsten-based alloys of greater than 90% theoretical density.
Abstract:
In order to produce a new substance having a diamond crystal structure, the following steps are taken in order. First, a graphite-like substance is prepared which contains boron (B), carbon (C) and nitrogen (N) as main elements. Then, the graphite-like substance is mixed with a metal powder to produce a mixture. Then, a pressure is applied to the mixture to produce a molded body, and then an explosion pressure is applied to the molded body.
Abstract:
Carbonaceous material embedded within an explosive charge, is subjected toressure and temperature conditions during detonation of the charge at a supervelocity modified to obtain a compaction pressure profile having a peak pressure that is of substantially constant prolonged duration.
Abstract:
A pulse detonation engine is provided with several detonation combustors selectively coupled to an air inlet and fuel source by a rotary valve. The rotary valve isolates the steady operation of the air inlet and fuel system from the unsteady nature of the detonation process, and allows the fueling of some of the detonation chambers while detonation occurs in other detonation chambers. The fuel system may use a solid fueled gas generator.
Abstract:
High-pressure high-temperature device for conversion the graphite to diamonds (DCGD) includes a container having a high pressure chamber, an inlet for introducing a fuel, an oxidizer and an electrolyte respectively into container, a generator of instantaneous electro-impulses, electrodes secured to the container and connected with the generator of instantaneous electro-impulses to produce the power electro-discharge between electrodes. DCGD includes a source of a direct electro-current and a pair of positive and negative electrodes positioned within an electrolyte for heating the graphite in the high pressure chamber. The high-pressure chamber includes a cylinder-piston unit submerged within an electrolyte. The piston of cylinder-piston unit is explosively driven toward the high-pressure chamber by the combined action of electro-discharge in the electrolyte a combustion of fuel inside of container. DCGD may be adapted for compaction other materials, for extruding, forging and the like. DCGD may be used also to provide coating, molding and hardening work pieces which must be placed in the container.
Abstract:
A method and apparatus are disclosed for efficient endothermic processing of liquids and the precipitation of dissolved elements and chemical compounds. Improvements over prior systems include system layout, components and modes of operation of the system. Applications of the system include destruction of toxic wastes and sewage treatment, precipitation of chemical compounds and elements including metals from solution (brine, sea water, industrial waste), sterilization and water purification, catalytic formation of chemical compounds, and processing of hydrocarbons.
Abstract:
A process of synthesizing an end product within an integrated engine-reactor wherein an initial product, e.g., syngas, is generated within a first chamber of the engine-reactor. This product is contacted with a catalyst in a second chamber within the engine-reactor to catalytically synthesize an end product, e.g., methanol, which is then expanded within the engine-reactor to rapidly cool the end product before it is exhausted from the engine-reactor.
Abstract:
This invention relates to the manufacture of compacts of ceramic composition, cermets, and other high hardness materials by applying explosive shock during exothermic sintering of such powders.