Abstract:
The occurrence of fluctuations in liquid chemical during the discharge and intake thereof in a device that employs a liquid chemical supply pump 10 that discharges liquid chemical taken in by means of a change in volume inside a pump chamber 16 that accompanies the displacement of a bellows type partition 14. The amount of fluctuation in the bellows type partition member 14 that accompanies the operation of a discharge side valve 32 will be detected by a displacement sensor 58. The amount of fluctuation is a parameter that indicates a correlation with the abrupt flow of liquid chemical that accompanies the opening of the discharge side valve 32. Thus, the amount of fluctuation will be reduced, and the pressure inside a pump chamber 16 prior to the opening of the discharge side valve 32 will be controlled.
Abstract:
A linear motor (10), a linear compressor (100), a method of controlling a linear compressor (100), a cooling system (20) and a system of controlling a linear compressor (100) to operate a linear compressor (100) in resonance in it's the greatest possible efficiency throughout its operation are described. One of the ways of achieving these objectives is by means of a linear compressor (100) applicable to a cooling system (20), the linear compressor (100) comprising a piston (1) driven by a linear motor (10), the piston (1) having displacement range controlled by means of a controlled voltage (VM), the controlled voltage (VM) having a voltage frequency (φp) applied to the linear motor (10) and adjusted by a processing unit (22), the range of piston (1) displacement being dynamically controlled in function of a variable demand of the cooling system (20), the linear compressor (100) having a resonance frequency, the processing unit (22) adjusting the range of piston (1) displacement, so that the linear compressor (100) will be dynamically kept on resonance throughout the variations in demand of the cooling system (20).
Abstract:
Systems and methods for compensating for pressure increase which may occur in various enclosed spaces of a pumping apparatus are disclosed. Embodiments of the present invention may compensate for pressure increases in chambers of a pumping apparatus by moving a pumping means of the pumping apparatus to adjust the volume of the chamber to compensate for a pressure increase in the chamber. More specifically, in one embodiment, to account for unwanted pressure increases to the fluid in a dispense chamber the dispense motor may be reversed to back out piston to compensate for any pressure increase in the dispense chamber.
Abstract:
The present invention relates to a fluid pump and a fluid-transfer plate and a sensor for a fluid pump, particularly applicable to linear compressors, for detecting the position of the respective piston and preventing the latter from colliding with the fluid-transfer plate upon variations in the compressor operation conditions, or even variations in the feed voltage. The objectives of the present invention are achieved by means of a fluid pump (1) comprising a piston (2) that is axially displaceable within a cylinder (3), the cylinder (3) comprising a cylinder closing fluid-transfer plate (40), the piston (2) being displaced toward the fluid-transfer plate (40) and capturing a gas or fluid from a low-pressure environment (11), and the fluid pump (11) comprising a sensor assembly (98), which includes an inductive sensor (8) associated with the fluid-transfer plate (40). The objectives of the present invention are also achieved by means of a fluid-transfer plate (40) particularly applicable to a fluid pump (1) and that comprises a valve plate (4) provided with a though-bore (10) for associating a protector (9) that cooperates with the cavity (10), the protector (9) comprising at least one sensor cavity (8′) for associating an inductive sensor (8). An inductive sensor (8) is also foreseen, which is applicable to the fluid pump (1).
Abstract:
In an effective method for starting a piston compressor which is easy to implement, and a piston compressor suitable for carrying out the method, there is provision, in a resetting phase, for driving a piston of the piston compressor in the direction of a compression point of the piston position by the application of a resetting drive moment. The resetting drive moment being maintained until the piston has reached a starting position by overstepping a steady-state point as a result of displacement of fluid out of the compression space, formed between the piston and a corresponding pressure cylinder, through at least one leakage point. In a subsequent acceleration phase, the piston is then accelerated out of the starting position into an operational direction of rotation with a starting drive moment.
Abstract:
Disclosed is an apparatus and method for controlling a reciprocating compressor capable of inexpensively and exactly controlling a position of a piston in a cylinder, by which a top clearance is minimized according to the information of a phase difference between a square wave of a piston stroke and a square wave of a current supplied to the compressor. The apparatus comprises a driving section for driving the reciprocating compressor by varying an angle or ignition in response to a control signal; a current phase detecting section for outputting a square wave corresponding to the detected current supplied to the compressor; a stroke phase detecting section for outputting a square wave corresponding to a stroke of the compressor; and a control section for controlling the angle of ignition of the driving section according to the phase difference between the square wave produced from the current phase detecting section and the square wave produced from the stroke phase detecting section.
Abstract:
A drive circuit (18) produces a drive signal having a waveform of a predetermined waveform shape for a device (10) having a piezoelectric actuator (14). The drive circuit (14) includes a memory (140) which stores waveform shape data which is utilized by the drive circuit in producing the drive signal. The drive circuit utilizes the waveform shape data so that, for each of plural points comprising a period of the waveform, the drive signal has an appropriate amplitude for the predetermined waveform shape. The waveform shape data has preferably been prepared to optimize one or more operational parameter(s) of the device. Preferably the waveform shape data has been prepared by solving a waveform equation, the waveform equation having coefficients determined to optimize at least one operational parameter of the device. The number of coefficients determined for the waveform equation depends on the number of harmonics of the waveform that are within a bandwidth of the device. Other aspects concerns devices which utilize the drive circuit, methods for operating devices, the memory (212) which is utilized by the drive circuit (e.g., the drive circuit which produces the drive signal for the device having the piezoelectric actuator) to store the waveform shape data, as well as apparatus and method for generating the optimized waveform shape data.
Abstract:
A fluid pumping system can be operated in dual control modes: as a syringe pump for nano-flow solvent delivery; and as a reciprocating pump for micro- and analytical flow solvent delivery. The fluid pumping system is also operated in a closed-loop digital control process using an optical encoder for piston refill stroke begin and end synchronization with a switching valve On and Off. A multidimensional apparatus and procedure using up to 8 of the invented fluid pumps for a fully automated procedure such as ICA™ chemistry for cellular protein separation, identification and quantification.
Abstract:
A pressure exchanger system having at least two tubular chambers, in which a plurality of reversing valves reverse the flow paths of fluid flows through the at least two tubular chambers. At least one driven reversing valve alternately reverses the flow paths between a supply source, which supplies a high-energy high-pressure fluid, and the tubular chambers. In reversing the liquid flows and shutting off previously open flow paths, the driven reversing element in the reversing valve executes a discontinuous or variable movement sequence.
Abstract:
An apparatus and method for controlling operations of a reciprocating compressor are disclosed. The apparatus includes a compressor control factor detecting unit for detecting a compressor control factor to detect a stroke value corresponding to a point where TDC (Top Dead Center)≈0 on the basis of a stroke estimate value of a reciprocating compressor and values of a current and a voltage applied to a motor of the reciprocating compressor; a stroke reference value determining unit for determining a stroke reference value on the basis of the detected compressor control factor; and a controller for varying a voltage applied to the reciprocating compressor according to the determined stroke reference value.