Abstract:
Disclosed is planographic printing plate precursor comprising a support having disposed thereon an image forming layer containing a fluorine macromolecular compound having a structural unit derived from a monomer represented by the following general formula (I). In the general formula (I), R0 represents a hydrogen atom, a methyl group, a cyano group or a halogen atom. X represents a single bond or a divalent connecting group. R1 to R6 each independently represent a hydrogen atom, an alkyl group, a fluorine atom or an alkyl group in which at least one hydrogen atom is substituted with a fluorine atom. Further, at least one of R1 to R6 represents a fluorine atom or an alkyl group in which at least one hydrogen atom is substituted with a fluorine atom. General formula (I) 1
Abstract:
A negative image-recording material for heat-mode exposure, which is able to form images by heat-mode exposure, comprises (A) a polyurethane resin having at least one or more side-chain branches of the following general formulae (1) to (3) which polyurethane resin is soluble in an alkaline aqueous solution, (B) a photo-thermal converting agent, and (C) a compound capable of generating a radical through heat-mode exposure to light of a wavelength which can be absorbed by the photo-thermal converting agent. In formulae (1) to (3), R1 to R11 each independently represents a monovalent organic group; X and Y each independently represents an oxygen atom, a sulfur atom, or nullN(R12)null; Z represents an oxygen atom, a sulfur atom, nullN(R13)null, or an optionally-substituted phenylene group; R12 represents a hydrogen atom or a monovalent organic group; and R13 represents a hydrogen atom or a monovalent organic group. 1
Abstract translation:能够通过热模式曝光形成图像的用于热模式曝光的负型图像记录材料包括(A)具有至少一个或多个以下通式(1)至 (3)哪种聚氨酯树脂可溶于碱性水溶液中,(B)光热转换剂,和(C)能够通过热模式暴露于能够被 光热转换剂。 式(1)〜(3)中,R 1〜R 11各自独立地表示1价有机基团。 X和Y各自独立地表示氧原子,硫原子或-N(R 12) - ; Z表示氧原子,硫原子,-N(R13) - 或任选取代的亚苯基; R 12表示氢原子或一价有机基团; R 13表示氢原子或一价有机基团。
Abstract:
A photosensitive lithographic printing plate comprising a substrate having provided on the surface thereof a photosensitive layer through a layer which is formed by coating and drying a composition prepared by hydrolyzing and polycondensing a compound represented by formula (I) in a solvent having dissolved therein a phenol having a molecular weight of 1,000 or less or an organic phosphoric acid compound:A.sub.m M(R).sub.n (I)wherein M represents silicon, aluminum, titanium or zirconium, A represents a hydrogen atom, an alkyl group, an aryl group, an alkenyl group, a propargyl group, an alkoxy group, an epoxyalkyl group, a silyl group, a siloxy group or a functional group capable of addition reaction by a radical, m and n each represents 0 or a positive integer, provided that m+n=3 or 4, and R represents one of the groups (a) to (e) defined in the specification.
Abstract translation:一种感光性平版印刷版,其特征在于,具有通过将溶解有式(I)的化合物的溶剂水解缩聚而成的组合物涂布干燥而形成的层而形成感光层的感光层。 分子量为1,000以下或有机磷酸化合物:AmM(R)n(I)其中M表示硅,铝,钛或锆,A表示氢原子,烷基,芳基,烯基 基团,炔丙基,烷氧基,环氧烷基,甲硅烷基,甲硅烷氧基或能够被基团加成反应的官能团,m和n各自表示0或正整数,条件是m + n = 3或4,R表示说明书中定义的组(a)至(e)中的一个。
Abstract:
The invention is directed to a lithographic printing plate precursor including, in the following order: a support; an image-recording layer containing a radical polymerizable compound and a radical polymerization initiator; and a protective layer containing a star polymer, and the star polymer is preferably a polymer in which from 3 to 10 polymer chains are branched from a central skeleton.
Abstract:
A method for manufacturing a lithographic printing plate precursor includes the steps of providing a support as a web, coating an image recording layer on the front side of the support, and depositing a back layer on the back side of the support using a deposition technique which is capable of depositing the back layer according to a predefined image. The method enables stacking and recutting of lithographic printing plate precursors without the need for interleafs.
Abstract:
A lithographic printing plate precursor in a positive-type with an infrared-sensitivity, having a support and an image recording layer provided on the support, the support having a hydrophilic surface, the recording layer having a particular resin, an amphoteric surfactant and/or an anionic surfactant, and an infrared absorbing agent, wherein the particular resin being at least one of resins selected from the group consisting of a polyurethane resin, a poly(vinyl acetal) resin, and maleimide resin A.
Abstract:
A process for making a lithographic printing plate that includes in sequence an exposure step of imagewise exposing by means of an infrared laser a lithographic printing plate precursor that has provided above a support a positive-working recording layer including (Component A) a (meth)acrylonitrile-derived monomer unit- and styrene-derived monomer unit-containing copolymer, (Component B) a water-insoluble and alkali-soluble resin, and (Component C) an infrared absorbing agent and a development step of developing, using an aqueous alkali solution including a betaine-based surfactant or a nonionic surfactant, the aqueous alkali solution having a pH of 8.5 to 10.8, by removing an exposed area of the positive-working recording layer whose solubility in aqueous alkali solution has been increased by the exposure. There is also provided a lithographic printing plate made by the process for making a lithographic printing plate.
Abstract:
A process for making a lithographic printing plate, comprising: an exposure step of imagewise exposing a lithographic printing plate precursor that comprises, above a hydrophilic support, a photosensitive layer comprising (A) a compound that generates a radical upon the application of light or heat, (B) a polymer having an aromatic carboxy group in a side chain, (C) a polymerizable compound, and (D) an infrared absorber; and a development processing step using one type of processing liquid, wherein the processing liquid has a pH of 8.5 to 10.8.
Abstract:
A negative-working lithographic printing plate precursor is disclosed that can be developed on the press without going through a development processing step, and a method of lithographic printing is also disclosed that uses this negative-working lithographic printing plate precursor. Also disclosed are a negative-working lithographic printing plate precursor that can be developed by a water-soluble resin-containing aqueous solution and a method of lithographic printing that uses this negative-working lithographic printing plate precursor. A negative-working lithographic printing plate precursor is provided that exhibits an excellent fine line reproducibility in nonimage areas even when printing is performed using ultraviolet-curing ink (UV ink). Also provided is a negative-working lithographic printing plate precursor that exhibits an excellent combination of fine line reproducibility and printing durability and that resists the production of scum during on-press development. The negative-working lithographic printing plate precursor has a support and has thereon a photopolymerizable layer that contains a polymer compound that has the urea bond in the main chain and a hydrophilic group and a carboxylic acid content less than 0.05 meq/g. The method of lithographic printing uses this negative-working lithographic printing plate precursor.
Abstract:
Provided is a lithographic printing plate precursor excellent in the printing durability, staining resistance and developability. The lithographic printing plate precursor comprises, on a support, an image recording layer, and an undercoat layer provided between the support and the image recording layer, the undercoat layer containing a polymer compound (D) composed of repeating units, the polymer compound (D) having, at the terminal of the principal chain thereof, a group having one or more groups selected from hydrophilic group and radical-polymerizable ethylenic unsaturated group, and each repeating unit having, as a side chain bound to the principal chain, one or more groups selected from support-adsorptive groups.