Abstract:
The invention discloses a carbon nanotube/polyetherimide/thermosetting resin dielectric composite and a preparation method therefor. 100 parts by weight of polyetherimide and 1-7 parts by weight of carbon nanotube are mixed uniformly in an Haake torque melt cavity to obtain a carbon nanotubes/polyetherimide composite; 20 parts of the carbon nanotube/polyetherimide composite are dissolved in 100-150 parts of dichloromethane, then the mixed solution is added in 100 parts of molten thermocurable thermosetting resin, mixing, and heat preserving, stirring are performed until a mixture is formed in a uniform state, and curing and post-treating are performed to obtain a carbon nanotube/thermosetting resin dielectric composite, wherein the substrate thereof has a typical reverse phase structure, while the carbon nanotubes are dispersed in a polyetherimide phase. The composite has a relatively low percolation threshold, a high dielectric constant and a low dielectric loss. The preparation method of the present invention has a simple process and is suitable for large-scale production.
Abstract:
The method of producing a masterbatch according to the present invention is a method of producing a masterbatch in which a metal salt compound is incorporated into a polyester resin, the method being characterized by comprising: a first step of obtaining a kneaded product by feeding the polyester resin and the metal salt compound to an extruder and melt-kneading the polyester resin and the metal salt compound; and a second step of, while continuing kneading after the first step, further feeding the polyester resin to the extruder and kneading the resulting mixture, wherein, in the first step, the polyester resin and the metal salt compound are fed at such a mass ratio that the amount of the metal salt compound is not more than twice the amount of the polyester resin; the total amount of the polyester resin fed in the first and second steps and the metal salt compound fed in the first step is, in terms of mass ratio, in the range of 2 to 20 times the total amount of the polyester resin and the metal salt compound that are fed in the first step.
Abstract:
Provided is a method of producing a masterbatch, in which a reduction in the viscosity of a polyester resin is inhibited and thereby a metal salt compound can be incorporated in a large amount. This method is a method of producing a masterbatch that comprises 0.4 to 10 parts by mass of at least one metal salt compound selected from the group consisting of metal benzoates, metal aliphatic carboxylates, metal aromatic phosphates, metal salts of sulfonamide compounds and metal salts of sulfonimide compounds with respect to 100 parts by mass of a polyester resin, wherein when the polyester resin and the metal salt compound are fed to an extruder and kneaded, the cylinder temperature of the extruder is controlled in a range of (the melting point of the polyester resin—60° C.) to (the melting point of the polyester resin—10° C.).
Abstract:
An ethylene/α-olefin copolymer comprising units derived from ethylene; and units derived from at least one α-olefin; wherein the ethylene/α-olefin copolymer has a density in the range of from 0.90 to 0.94 g/cc; a melt index (I2) in the range of from 0.05 to 50 dg/min; an Mw/Mn of from 3 to 5; and from 300 to 500 vinyl unsaturations per 1,000,000 carbon atoms in the ethylene/α-olefin copolymer is provided. Also provided is a process for producing an ethylene/α-olefin copolymer comprising: (1) polymerizing ethylene and one or more α-olefins in a polymerization reactor; (2) thereby producing an enhanced melt strength ethylene/α-olefin copolymer having from 300 to 500 vinyl unsaturation units per 1,000,000 carbon atoms, a density in the range of from 0.90 to 0.94 g/cc; a melt index (I2) in the range of from 0.05 to 50 dg/min; and a Mw/Mn of from 3 to 5.
Abstract:
In a method of producing a polymer composite, a polymer is provided in a liquid state such as a molten state. A plant material, such as soymeal, is provided that includes protein and carbohydrate. The plant material has a particle size less than 50 microns. A reactive protein denaturant is also provided. A dispersion of the plant material and the reactive protein denaturant is formed in a matrix of the liquid polymer. The plant material is reacted to bond with the reactive protein denaturant, and the reactive protein denaturant is reacted to bond with the polymer. The polymer is solidified to produce the polymer composite.
Abstract:
In some variations, the invention provides a method and additive for improving melt strength and processing stability in polymer blow molding or blown-film extrusion, comprising: providing a polymer or a combination of polymers; forming a melt phase of the polymer(s); and introducing nanocellulose to the melt phase, wherein the introduction of the nanocellulose in step (c) increases the melt strength of the melt phase. The nanocellulose may include hydrophobic or hydrophilic nanocellulose. The nanocellulose may include lignin-coated cellulose nanocrystals and/or lignin-coated cellulose nanofibrils. The nanocellulose may be present in the melt phase at a concentration of about 0.01 wt % to about 10 wt %, for example. The nanocellulose is preferably obtained from an AVAP® lignocellulosic biomass fractionation process.
Abstract:
A continuous process for manufacturing a blended polymer includes mixing a native starch, a polyolefin, and a compatibilizer; and forming the blended polymer from the resulting mixture using an extruder. The process can also include mixing the native starch, the polyolefin, and the compatibilizer in the extruder. The polyolefin can be a petroleum- or bio-based polyethylene, and the compatibilizer can be a maleic anhydride grafted polyolefin. The process can further include mixing a processing aid such as glycerin, and forming the blended polymer into a film.
Abstract:
There is provided a process for producing a resin composition in a safe and cost-effective manner, the resin composition being a dispersion of active particles reactive with oxygen in a thermoplastic resin. The process is one for producing a resin composition containing at least a thermoplastic resin and active particles that have been dispersed in the thermoplastic resin and are reactive with oxygen in an atmosphere, the process comprising the steps of: protecting the active particles with a dispersion medium to prevent oxygen in the atmosphere from contacting with the active particles; removing the dispersion medium while melt-kneading the thermoplastic resin and the active particles protected with the dispersion medium to replace the dispersion medium with the thermoplastic resin; and cooling and solidifying the thermoplastic resin with the active particles dispersed therein.
Abstract:
Provided is a composition for hot melt extrusion including a drug and hypromellose acetate succinate (HPMCAS) having a hydroxypropoxy molar substitution of 0.40 or more and a mole ratio of an acetyl group to a succinyl group of less than 1.6. Further, provided is a method for producing a hot melt extrudate including the step of hot melt-extruding a composition for hot melt extrusion including a drug and hypromellose acetate succinate having a molar hydroxypropoxy substitution of 0.40 or more and a mole ratio of an acetyl group to a succinyl group of less than 1.6, at a hot melt temperature of not lower than a melting temperature of the hypromellose acetate succinate or of not lower than a temperature at which both the hypromellose acetate succinate and the drug are melted.
Abstract:
Provided are: a resin composition that can be given excellent formability and wear resistance when used as a friction material or the like; and a method for producing the resin compound. A titanate compound, which is a salt of at least one element selected from the group consisting of alkali metals and alkaline earth metals, is dispersively contained in a thermosetting resin prior to curing.