Abstract:
A method for lubricating the passage of a conveyor comprising applying an undiluted lubricant composition through non-energized nozzles to at least a portion of the conveyor, the lubricant composition comprising a silicone emulsion and a water-miscible lubricant, the lubricant composition having a viscosity of less than 40 centipoise when measured using a Brookfield viscometer with an RV2 spindle at a spindle speed of 20 RPM and the lubricant composition being substantially free of a triethanolamine salt of dodecyl benzene sulfonic acid.
Abstract:
The invention relates to thermally conductive greases that may contain carrier oil(s), dispersant(s), and thermally conductive particles, wherein the thermally conductive particles are a mixture of at least three distributions of thermally conductive particles, each of the at least three distributions of thermally conductive particles having an average (D50) particle size which differs from the other average particle sizes by at least a factor of 5.
Abstract:
A wiresaw cutting fluid composition of the present invention comprises about 25 to about 75% by weight of a particulate abrasive suspended in an aqueous carrier containing a polymeric viscosity modifier that comprises a polymer including a majority of non-ionic monomer units (preferably 100 mol % non-ionic monomer units), has a number average molecular weight (Mn) of at least about 5 kDa, and is present in the composition at a concentration sufficient to provide a Brookfield viscosity for the composition in the range of about 50 to about 1000 cP, e.g., 50 to about 700 cP, at about 25° C. at a spindle rotation rate of about 60 rpm. In one embodiment, the viscosity modifier comprises a polymer having a weight average molecular weight (Mw) of at least about 200 kDa. When a viscosity modifier of 200 kDa or greater Mw is utilized, a preferred wiresaw cutting method the cutting fluid is circulated and applied by pumps and nozzles operating at a relatively low shear rate of not more than about 104 s−1.
Abstract:
An exemplary embodiment is directed to an equipment lubricating composition comprising useful microorganisms. An exemplary embodiment comprises a water insoluble, water-absorbent substance and an encapsulated microorganism component including viable microorganisms. This encapsulating material may encapsulate and protect the microorganisms by essentially preventing the microorganisms from contacting the external environment. Based on the protection afforded by the encapsulation, exemplary embodiments may include previously inhospitable carrier compounds such as particulate machine lubricants.
Abstract:
The invention relates to thermally conductive greases that may contain carrier oil(s), dispersant(s), and thermally conductive particles, wherein the thermally conductive particles are a mixture of at least three distributions of thermally conductive particles, each of the at least three distributions of thermally conductive particles having an average (D50) particle size which differs from the other average particle sizes by at least a factor of 5
Abstract:
This invention relates to a lubricating composition comprising a major amount of an oil of lubricating viscosity, (A) at least one organic polysulfide comprising at least about 90% dihydrocarbyl trisulfide, from about 0.1% up to about 8% dihydrocarbyl disulfide, and less than about 5% dihydrocarbyl higher polysulfides, and (B) at least one overbased metal composition, at least one phosphorus or boron compound, or mixtures of two or more thereof. The invention also relates to concentrates and greases containing the above combination. The invention also relates to methods of making the organic polysulfide.
Abstract:
This invention relates to novel water soluble metal working fluid compositions, their use to work metal, a process for working metal using such compositions and the metal worked article of manufacture. More particularly, this invention relates to fluid compositions useful in cutting, grinding, shaping and other metal working operations which require a lubricant. The terms nullfirst Group Anull and nullsecond Group Bnull are used herein to denote different groups and not to indicate any sequence of use or selection as any possible combination or sequence of use of a component(s) is envisioned without limit of any kind. The disclosed fluid compositions are also anticorrosive and environmentally more acceptable than current oil based fluids. There has now been discovered an essentially odorless, substantially non-oil misting, water-soluble metal working fluid comprising, at least one component selected from a first Group A herein and optionally one or more components selected from a second Group B herein preferably with the balance of the composition being water and other (optional) minor ingredients. When a component is employed from Group A and a component is employed from Group B the action of the combination generally enhances performance of the resulting combination with contain moieties from both Group A and Group B.
Abstract:
This invention relates to a lubricating composition comprising a major amount of an oil of lubricating viscosity with an iodine number less than about 9, (A) one or more antioxidant, and (B) from about 0.01% to about 3% by weight of at least one dispersant or detergent, wherein the total amount of antioxidant is at least about 2% by weight. The additives are useful act controlling oxidation of lubricants. Further, these lubricants have reduced viscosity increase caused by oxidation, while maintaining favorable carbon/varnish ratings.
Abstract:
A filling compound for electrical and optical equipment in the form of cables, connectors, plugs, etc. and to assemblies thus produced, is provided. Electrical and optical equipment in the form of cables, connectors, plugs, etc. have to be protected against harmful influences penetrating from outside, particularly water, and also against mechanical damage during laying or as a result of exposure to heat. The filling compound is based on a stellate substance, i.e. a substance having a branched molecular structure in which, ideally, 3 or more branches, more particularly polymeric chains, radiate from a single branching point. The filling compound is flexible at very low temperatures but, on the other hand, does not run out, even at extremely high temperatures.
Abstract:
A metal-working water or a metal-working composition which has excellent cooling and lubricating properties and does not exert a harmful influence on the environment. A metal-working water containing sodium ion and one or more kinds selected from the group consisting of fluoride ion, hydrogencarbonate ion and silicon and being adjusted to pH 6.0 to pH 10 can be used as a substitute for a conventional cutting oil. A metal-working composition including a metal-working water with such additive as a rust-preventive agent and being adjusted to pH 6.0 to pH 10 can also be used.