Abstract:
A composite formulation and composite product are disclosed. The composite formulation includes a polymer matrix having metal particles, the metal particles including dendritic particles and tin-containing particles. The metal particles are blended within the polymer matrix at a temperature greater than the melt temperature of the polymer matrix. The tin containing particles are at a concentration in the composite formulation of, by volume, between 10% and 36%, and the dendritic particles are at a concentration in the composite formulation of, by volume, between 16% and 40%. The temperature at which the metal particles are blended generates metal-metal diffusion of the metal particles, producing intermetallic phases, the temperature being at least the intermetallic annealing temperature of the metal particles.
Abstract:
Disclosed is a production method of a thermoplastic resin composition comprising: compounding 0.001 to 50 parts by mass of a metal complex (B) with respect to 100 parts by mass of a thermoplastic resin (A), and kneading it under a condition of a kneading temperature of 225 to 300° C. and of a kneading time of 0.5 to 20 minutes, wherein a metal of the metal complex (B) is a metal except for zinc; a molded body obtained by molding the thermoplastic resin composition which is obtained by the production method; and a light emission body using the molded body.
Abstract:
Disclosed is a bituminous composition in the form of granules, each granule including a core and a coating and having a mass for approximately one hundred particles of from 0.5 g to 2 g, the core including from 40 wt. % to 60 wt. % of a binder matrix; from 30 wt. % to 40 wt. % of a polymer; from 4 wt. % to 6 wt. % of a compatibilizing agent; and from 2 wt. % to 15 wt. % of an anti-adhesive filler; and the coating including an anti-sticking agent. The invention relates also to a method for preparing the composition, and to the use thereof in bitumen plants.
Abstract:
A method for producing a resin composition using an extruder, the extruder having a cylinder and a screw disposed inside the cylinder, the cylinder being provided with a main feed port and further optionally provided with a side feed port disposed downstream in an extrusion direction from the main feed port, and the method comprising: supplying a resin (A) in the total amount to the extruder from the main feed port; supplying a fibrous filler (B), whose a weight average fiber length is 1 mm or more, in the total amount to the extruder from the main feed port, or, with the extruder being provided with the side feed port, supplying the fibrous filler (B) partly to the extruder from the main feed port and the remainder to the extruder from the side feed port; melt-kneading the supplied resin (A) and the fibrous filler (B); and extruding the melt-kneaded material.
Abstract:
The invention pertains to a process for manufacturing a fluoropolymer hybrid organic/inorganic composite comprising: (i) partially hydrolysing and/or polycondensing, in the presence of an aqueous medium, a metal compound of formula (I): X4-mAYim, wherein X is a hydrocarbon group, Y is a hydrolysable group selected from the group consisting of an alkoxy group, an acyloxy group and a hydroxyl group, A is a metal selected from the group consisting of Si, Ti and Zr, and m is an integer from 1 to 4, so as to obtain an aqueous medium comprising a pre-gelled metal compound comprising one or more inorganic domains consisting of ≡A-O-A≡ bonds and one or more residual hydrolysable groups Y [compound (M)], and then (ii) reacting in the molten state at least a fraction of hydroxyl groups of a functional fluoropolymer [polymer (F)] with at least a fraction of hydrolysable groups Y of said pre-gelled metal compound [compound (M)], so as to obtain a fluoropolymer hybrid organic/inorganic composite. The invention also pertains to uses of said fluoropolymer hybrid organic/inorganic composite in several applications.
Abstract:
The invention relates to preparation of rubber reinforced with at least one of graphene and carbon nanotubes with specialized coupling agent and tire with component thereof.
Abstract:
There is a material for molding including carbon fiber bundles to be easily impregnated, including carbon fibers and at least one impregnation aid in an amount of 3 to 15 parts by mass based on 100 parts by mass of the carbon fibers and satisfying a specific requirement, wherein 50 to 2,000 parts by mass of a thermoplastic polyamide is adhered to the carbon fiber bundles to be easily impregnated.
Abstract:
A biaxially oriented polyester film comprising polyester and at least one hydrolysis stabiliser selected from a glycidyl ester of a branched monocarboxylic acid, wherein the monocarboxylic acid has from 5 to 50 carbon atoms, wherein said hydrolysis stabiliser is present in the film in the form of its reaction product with at least some of the end-groups of said polyester, and wherein said reaction product is obtained by the reaction of the hydrolysis stabiliser with the end-groups of the polyester in the presence of a metal cation selected from the group consisting of Group I and Group II metal cations.
Abstract:
The invention relates to preparation of rubber reinforced with at least one of graphene and carbon nanotubes with specialized coupling agent and tire with component thereof.
Abstract:
Polymeric composites and methods of manufacturing polymeric composites are described. In one embodiment, a set of microcapsules containing a phase change material are mixed with a dispersing polymeric material to form a first blend. The dispersing polymeric material has a latent heat of at least 40 J/g and a transition temperature in the range of 0° C. to 50° C. The first blend is processed to form a polymeric composite. The polymeric composite can be formed in a variety of shapes, such as pellets, fibers, flakes, sheets, films, rods, and so forth. The polymeric composite can be used as is or incorporated in various articles where a thermal regulating property is desired.