Abstract:
A medical device for use in delivering RF energy to a tissue opening is disclosed. In one embodiment, the medical device comprises a compliant electrode. The compliant electrode can include a shape memory material, such as NITINOL, to facilitate the electrode having at least one relaxed orientation. The electrode can be deployed from a delivery shaft inside the left atrium, for example, of a heart through the delivery shaft. The electrode can be configured to substantially conform to the tissue proximate the tissue opening. After energy is applied to the tissue between the left and right electrodes, the left electrode can be removed from the left atrium by being received back into the delivery shaft and the delivery shaft thereafter removed from the opening.
Abstract:
A method of depositing shape memory or superelastic thin films by chemical vapor deposition (CVD) and medical devices made thereby, including stents, grafts, stent-grafts, stent covers, occlusive and filter membranes and drug-delivery devices. The method entails a thin film is deposited on a substrate surface using a CVD reaction in the production of a film of nickel-titanium shape memory or superelastic alloy. Such nickel- titanium-based shape memory or superelastic alloys may be binary nickel-titanium alloys or may include additional compounds to form ternary, quaternary, or higher level alloys.
Abstract:
Schaltgerät (1) mit einem Gehäuse (2) und mit wenigstens einer ein festes und ein bewegliches Kontaktstück (8, 6) umfassenden Kontaktstelle (4), und mit einem elektromagnetischen Auslöser (20, 20a, 20b), der eine Auslösespule (22, 22a, 22b) und einen Schlaganker (26, 26a, 26b) aufweist, dadurch gekennzeichnet, dass der elektromagnetische Auslöser (20, 20a, 20B) einem mit dem Schlaganker (26, 26a, 26b) in Wirkverbindung stehenden Schnappkörper (24, 24a, 24b) aus einem Material mit magnetischem Formgedächtniseffekt umfasst, wobei unter Einfluss des Magnetfeldes der Auslösespule (22, 22a, 22b) im Kurzschlussstromfall der Schnappkörper (24, 24a, 24b) in zwei bistabile Stellungen umgesteuert wird.
Abstract:
Catheters are provided for performing medical procedures, such as tissue ablation, adjacent the ostia of anatomical vessels, such as pulmonary veins. The catheter comprises an elongated flexible integrated catheter body having proximal and distal shaft portions and at least one operative element carried by the distal shaft portion. The distal shaft portion has a proximal section configured to be internally actuated (e.g., using a steering mechanism or pre-shaping the proximal section) to form a simple curve with an apex that can be inserted into the vessel ostium, an intermediate section pre-shaped to form a curve that bends opposite the simple curve, and a distal section configured to be placed into a non-radial relationship (tangential or oblique) with the vessel ostium when the apex of the simple curve is inserted into the vessel ostium.
Abstract:
Active seal assemblies employing active materials that can be controlled and remotely changed to alter the seal effectiveness, wherein the active seal assemblies actively change modulus properties such as stiffness, shape orientation, and the like. In this manner, in seal applications tailored for vehicles such as in a vehicle door application, door opening and closing efforts can be minimized yet seal effectiveness can be maximized.
Abstract:
A tissue-separating catheter assembly comprises a rotatable shaft, having a distal shaft portion, and a tissue separator device extending along the shaft. The tissue separator device has a distal separator part at the distal shaft portion movable between a retracted state, towards the distal shaft portion, and an outwardly extending, operational state, away from the distal shaft portion. A pivot joint may be used to pivotally connect the distal separator end to the distal shaft portion. The distal shaft portion may comprise a distally-facing transition surface at a proximal end of the distal shaft portion. First and second energizable tissue separator elements may be used at the transition surface and the tip of the device, respectively.
Abstract:
A garment such as a sport shirt (1) has concealed ventilation channels (2), which provide a continuous air channel between permanent openings. In one embodiment, the channels (2) are flexible and non-intrusive and the openings are maintained by springy eyelets (3). The eyelets (3) and channels (2) are attached to the main fabric of the garment (1), providing a robust and a streamlined construction. Another embodiment incorporates active ventilation structures (30) within the channels (2), the structures having a natural vibration frequency matched to a motion frequency spectrum of the wearer. In a further embodiment, the ventilation channels (2) are made of shape memory polymer and change shape in response to changes in temperature.
Abstract:
Die Erfindung betrifft ein elektrisches Schaltglied (1), insbesondere zum Schalten hoher Ströme, mit einem Gehäuse (3), welches eine Kontakteinheit (5) umfasst, wobei die Kontakteinheit zwei ortsfest mit dem Gehäuse verbundene oder damit einstückig ausgebildete Anschlusskontakte (13, 19) für das Zuführen und Abführen eines zu schaltenden elektrischen Stroms aufweist und wobei die beiden Anschlusskontakte im Ausgangszustand des Schaltglieds innerhalb des Gehäuses elektrisch leitend verbunden sind, und mit einem im Gehäuse vorgesehenen, aktivierbaren Material (21), welches nach dem Aktivieren einen Gasdruck zur Beaufschlagung der Kontakteinheit (5) erzeugt, wobei die elektrisch leitende Verbindung durch die Beaufschlagung mit dem Gasdruck aufgetrennt wird. Die Kontakteinheit (5) umfasst ein relativ zu den ortsfesten Anschlusskontakten (13, 19) unter der Beaufschlagung des erzeugten Gasdrucks bewegbares Kontaktelement, (15) welches durch die Beaufschlagung mit dem erzeugten Gasdruck in Richtung der Achse der Kontakteinheit aus seiner Ausgangsposition in eine Endposition bewegt wird, in welcher die elektrische Verbindung über die Kontakteinheit unterbrochen ist.