Abstract:
A centrifugal blood pump prevents a shaft member from oscillating due to expansion of a pump housing resulting from pressurization of the blood. The centrifugal blood pump is manufactured by assembling a bottom member 21 and a lid member 22, and compressing them in a direction in which the bottom member 21 and the lid member 22 approach each other by a deformation amount along their outer circumferential walls. The lid member and the bottom member are joined while in the compressed state in order to create a preloading force between the shaft member and bearings to resist the expansion due to pressurization of the blood during use.
Abstract:
The present disclosure relates to a rotary blood pump with a double pivot contact bearing system with an operating range between about 50 mL/min and about 1500 mL/min, wherein the force on the upper bearing is less than 3N during operating speeds up to 6000 rpm. The disclosure also relates to a method of using a blood pump system for persistently increasing the overall diameter and lumen diameter of peripheral veins and arteries by persistently increasing the speed of blood and the wall shear stress in a peripheral vein or artery for period of time sufficient to result in a persistent increase in the overall diameter and lumen diameter of the vessel.
Abstract:
Methods for estimating flow rate in a blood circulation assist system employ impeller eccentricity. A method includes magnetically rotating an impeller within a blood flow channel of a blood pump. The impeller is levitated within the blood flow channel transverse to the impeller axis of rotation. A rotational speed for the impeller is determined. At least one impeller transverse position parameter is determined. The at least one impeller transverse position parameter is based on at least one of (1) an amount of a bearing current that is used to levitate the impeller transverse to the impeller axis of rotation, and (2) a position of the impeller within the blood flow channel transverse to the impeller axis of rotation. A flow rate of blood pumped by the blood pump is estimated based on the impeller rotational speed and the at least one impeller transverse position parameter.
Abstract:
A blood pump includes a hub having an axis of rotation and a generally cylindrical shape. The hub has an upstream end region, a central region, and a downstream end region, and the hub includes a magnetic material. Blades that are disposed on the downstream end region of the hub extend downstream of the hub.
Abstract:
An integrated perfusion apparatus or device for use in e.g. extracorporeal membrane oxygenation, cardiopulmonary bypass, or isolated organ or limb perfusion, comprises a blood pump for circulating blood through the device; a blood oxygenator for oxygenating blood, and at least one heat control unit capable of controlling and/or regulating blood temperature within the device, wherein the at least one heat control unit comprises at least one solid state heating and/or cooling source, such as at least one Peltier device. The invention also relates to a method of performing perfusion on a patient, limb or organ, comprising using the perfusion device.
Abstract:
The invention relates to a device for circulatory support of the heart and to a corresponding method with a holding means which is configured such that it can be implanted intracardially in the left and/or right ventricular outflow tract of the heart by means of a catheter, preferably using an endovascular method, through a femoral access and/or a percutaneous transventricular, transseptal, transapical or transvenous access, wherein the holding means comprises an anchoring means which can be fixed in the subcommissural triangle underneath the aortic valve and the pulmonary valve, respectively in the flow direction of the blood on the ventricular side of the aortic valve and the pulmonary valve, respectively, a pump which is configured such that it can be fixed in the holding means by means of a catheter, preferably using an endovascular method, through a femoral access and/or a percutaneous transventricular, transseptal, transapical or transvenous access, wherein the pump (a) can either be inserted releasably into the holding means after the holding means has been fixed by means of the anchoring means in the subcommissural triangles underneath the aortic valve and the pulmonary valve, respectively or (b) is firmly connected to the collapsible and expandable anchoring means.
Abstract:
The catheter device comprises a motor at the proximal end of the catheter device and a drive shaft, extending from the proximal end section to the distal end section of the catheter device, for driving a rotating element located at the distal end of the catheter device. The catheter device also comprises a hose-like catheter body which encompasses the drive shaft and extends from the proximal end section to the distal end section. At the proximal end of the catheter device, the drive shaft is connected to a motor by a clutch. The clutch is a magnetic clutch with a proximal and a distal magnet unit. The proximal magnet unit is connected to the motor and the distal magnet unit to the drive shaft. The distal magnet unit is mounted fluid-tight in a clutch housing. The proximal end of the catheter body makes a fluid-tight connection with the clutch housing.
Abstract:
A high efficiency blood pump includes a pump housing, wherein the pump housing provides an inlet and outlet. The pump includes a motor housing, wherein the motor housing contains a motor. An impeller is housed in the pump housing, wherein the impeller is radially supported by a hydrodynamic bearing providing at least one row of pattern grooves. A diaphragm provided by the pump housing separates the impeller chamber from the motor chamber. A magnetic coupling is provided between the motor and the impeller, wherein the magnetic coupling causes the impeller to rotate when the motor rotates and provides axial restraint of the impeller.
Abstract:
The invention is a heart assist device which has been developed in order to maintain the blood circulation in end-stage heart patients who do not respond to medical treatment, and it has been designed in size and shape so that it can be installed into the anatomically spacious root sections of the aorta and main pulmonary artery with its small volume, and exceptional motor design without a shaft, the device, which contains a brushless, asynchronous and three-phase electric motor, will consume much less energy. The three-phase current required for the motor is provided from the power supply outside the body through the synchronous and wireless transmission of three phases. The invention is about a permanent endovascular cardiac support device which contains a three-phase, brushless, asynchronous electric motor, and the required energy is provided through the three-phase wireless power transmission from outside the body.
Abstract:
A ventricular assist device includes a stent for placement within a cardiac artery and arranged for placement, the stent arranged to have an open configuration defining a flow path, a rotor sized to fit within the stent and arranged for percutaneous placement the flow path, the rotor including a surface disposed about a central portion and angled with respect to the flow path and having a first plurality of magnets. A collar is sized for placement about the cardiac artery and includes a stator. A power source is coupled to the stator, and the stator and the rotor are arranged to rotate the rotor about an axis. A timing control module controls a rotational speed of the rotor. Accordingly, the surface of the rotor is arranged to move blood along the flow path in response to rotation of the rotor.