Abstract:
A composition that includes solid lubricant nanoparticles and an organic medium is disclosed. Also disclosed are nanoparticles that include layered materials. A method of producing a nanoparticle by milling layered materials is provided. Also disclosed is a method of making a lubricant, the method including milling layered materials to form nanoparticles and incorporating the nanoparticles into a base to form a lubricant.
Abstract:
Disclosed is a piston (1) for a combustion engine, comprising hub bores (3) that are provided with plain bearing surfaces (5) and are used for accommodating a piston pin. In order to very effectively and inexpensively prevent the piston pin and the hub bores from jamming and wearing off, a self-lubricating coating (6) made of a thermally cured resin which contains embedded solid lubricant particles is applied directly to at least one subarea (Tb) of the plain bearing surfaces by means of rotary atomization.
Abstract:
A low friction sliding mechanism employed in an internal combustion engine of an automotive vehicle. The low friction sliding mechanism includes first and second sliding members which are in slidable contact with each other. At least one of the first and second sliding members has a sliding surface portion whose at least a part is formed of a resinous material containing hydrophilic fine particle. Additionally, a lubricant exists between the first and second sliding members and includes a friction modifier containing at least one of organic oxygen-containing compound and aliphatic amine-based compound.
Abstract:
An object of the present invention is to provide a plain bearing which can be further improved in bearing capability, in particular, anti-seizure property, initial conformability and cavitation resistance. In the present invention, a sliding layer 2 is formed on the surface of a bearing alloy layer 1 formed of a copper-based or aluminum-based alloy, and the sliding layer 2 comprises a resin binder obtained by applying a strong shearing force to a composition comprising a polybenzimidazole resin as main constituent and at least one member selected from the group consisting of a polyamide-imide resin, a polyamide resin and an epoxy resin, to make the composition into a polymer alloy, and 25 to 75 mass % of a solid lubricant. Owing to such a constitution, toughness and strength are imparted to the sliding layer 2 and the anti-seizure property, initial conformability and cavitation resistance can also be improved.
Abstract:
A food grade, low friction lubricant additive for use with oil-based lubricants. The additive comprises boron nitride in combination with a dispersant and an oil carrier.
Abstract:
The present invention provides a lubricant composition for hot forming which makes it possible to provide lubricity at 80° C. or more without being peeled or washed by the roll cooling water, and which is easily washed under 40° C. without having water resistance. The lubricant composition for hot forming of the present invention comprises: a solid lubricant from 10 to 40% by mass; water-dispersible synthetic resin from 5 to 20% by mass; inorganic acid amine salt from 0.5 to 5% by mass; and water from 45 to 80% by mass.
Abstract:
A lubricant molded body, which is to be applied to a surface of a photosensitive layer for electrophotography in an image forming apparatus, for example, is composed of at least two kinds of higher fatty acid metallic salts having respectively different carbon numbers. As the higher fatty acid metallic salt that forms lubricant molded body, compounds such as zinc stearate, calcium stearate, barium stearate, aluminum stearate, zinc laurate, calcium laurate, etc. may be recited. The higher fatty acid metallic salts may contain at least one kind of fillers selected from the group consisting of silica, alumina, tungsten disulfide, molybdenum disulfide, graphite fluoride, graphite, boron nitride, polytetrafluoroethylene (PTFE), ethylene tetrafluoroethylene (ETFE), and polyvinylidene fluoride (PVDF).
Abstract:
The present invention intends to provide a slide member with increasing an abrasion resistance and an adherence, a friction coefficient is further decreased.A part of the base member surface of the slide member is provided with a streak so that a surface roughness thereof by a ten-point height of roughness profile is 8 to 18 μmRz. A dry coat lubricant has polyamideimide resin, at least one kind of a layer improve agent selected from epoxysilane and epoxy resin, and at least one kind of hard particles selected from a silicon nitride and an alumina. Such construction can not only increase the abrasion resistance and the adherence of the slide member, but can decrease friction coefficient of the slide member.
Abstract:
The present invention intends to provide a slide member with increasing an abrasion resistance and an adherence, a friction coefficient is further decreased. A part of the base member surface of the slide member is provided with a streak so that a surface roughness thereof by a ten-point height of roughness profile is 8 to 18 μmRz. A dry coat lubricant has polyamideimide resin, at least one kind of a layer improve agent selected from epoxysilane and epoxy resin, and at least one kind of hard particles selected from a silicon nitride and an alumina. Such construction can not only increase the abrasion resistance and the adherence of the slide member, but can decrease friction coefficient of the slide member.
Abstract:
A refrigerating machine oil for a carbon dioxide refrigerant according to the invention is a refrigerating machine oil comprising polyalkylene glycol represented by the following general formula (1): R1{—(OR2)n—OH}m (1) [where R1 represents a residue of an organic compound having a hydroxyl group, from which the hydroxyl group has been removed, R2 an alkylene group, and m and n respective integers], wherein a number average molecular weight of the polyalkylene glycol is not less than 500 nor more than 5000, wherein a rate of ethylene group among the alkylene group in the polyalkylene glycol is more than 0 and not more than 80 mol %, and wherein a rate of molecules in which the alkylene group bonded to a terminal hydroxyl group in the polyalkylene glycol is an ethylene group, is not more than 20 mol %.