Abstract:
A damping mechanism for an opening and closing member that opens and closes an opening while changing a center of rotation has an arm with damped rotational speed to support a shaft part of the opening and closing member. A position of the shaft part with respect to the arm is changed along with the opening and closing operation of the opening and closing member by a guide member. The arm is urged toward an opening direction of the opening and closing member by a forcing member, and the opening and closing member is maintained in a closed state against the force of the forcing member by a locking member.
Abstract:
A storage bin includes a door pivoted to the storage bin for movement between open and closed positions, and a biasing device operably connected to the storage bin and the door for biasing the door as the door nears the open and closed positions. The biasing device includes a spring and a T-shaped shifting anchor connected to the spring that translates and changes a torque arm of a linear spring as the door is moved so that the spring creates a force sufficient to close the door during a last portion of door closure movement and so that the spring creates a force sufficient to open the door during a last portion of door opening movement.
Abstract:
A detented and dampened hinge mechanism with push-pull and pull-push operation is disclosed. The present invention relates generally to a hinge mechanism that includes a first arm and a second arm that are pivotally connected to one another such that the arms can be moved relative to one another between a closed position and an open position. A damper is fitted into a cutout of the second arm such that the damper can engage with a length of teeth of the first arm when the hinge mechanism moves between the open and closed positions. Biasing means is fitted between hooks or bosses of the arms, and biases the first and second arms toward the open position.
Abstract:
The invention is directed to a simply designed and easy-to-operate brake retardation apparatus in which a push rod is moveable in guides of a housing and possesses a section formed as a gear rack which meshes with a pinion of a shock absorber also retained in the housing.
Abstract:
A damping device for damping the relative rotation of a rotating member. The damping device includes a casing, a rotor disposed in an interior space of the casing, and a damping mechanism including a viscous liquid disposed in an annular chamber formed between the casing and the rotor. The viscous liquid exerts frictional forces to damp the relative rotation between the rotor and the casing in a first rotation direction but not in the opposite rotation direction, the damping force increasing when the rotor and the casing rotate relative to each other from a first relative angular position to a second relative angular position in the first rotation direction. The casing and the rotor are structure to provide a damping force by impeding the flow of the viscous liquid within the chamber, and to provide another damping force by the contacting of the rotor and the casing. A valve is further provided within the chamber to restrict the flow of the viscous liquid. A toilet seat and lid unit incorporating two identically shaped damping devices, as well as a toilet bowl incorporating the seat and lid unit are also provided.
Abstract:
A rotary damper uses a motor to selectively dynamically brake the rotational movement between a housing and a cover of a wireless communications device. A clutch that is moveable between an engaged position and a disengaged position connects the motor to the cover so that the relative rotational movement between the housing and the cover in at least one rotational direction is resisted by the motor when the clutch is in an engaged position. The clutch preferably includes a coupler axially moveable between a deployed position directly engaging the flip cover and a retracted position disengaged from the cover, and an actuator moveable between a first position and a second position so as to cause the coupler to assume the deployed position and the retracted position, respectively. The actuator preferably includes a spring to bias the coupler towards the deployed position. A shaft preferably extends through the motor and connects the actuator to the coupler. The coupler may rotate at a slower speed relative to the shaft or may rotate at the same speed. The rotary damper may also include an eccentric weight attached to the shaft so as to spin therewith. When the clutch is in the disengaged position, the motor may intermittently spin the shaft causing the eccentric weight to spin, thereby imparting a shaking motion to the overall phone.
Abstract:
An over-the-top type cabinet door prop unit is characterized in that it comprises a fitting case to be rigidly fitted to the inner surface of one of the lateral walls of the cabinet, a movable spring holder vertically movable relative to the fitting case containing it and urged downward by compression springs, a link arm pivotably linked at the upper end to the movable spring holder by a pivot pin and a swing arm swingable around an arm spindle located in a lower portion of the fitting case and having a base section arranged around the arm spindle and linked to the lower end of said link arm by a link pin and an arm section extending from the base section and pivotably linked at the distal end thereof by an anchor pin to an anchor pin bearing secured to the over-the-top type cabinet door and that the pivot where the link arm and the base section of the swing arm is linked by the link pin is located closer to the cabinet door relative to the vertical axial line connecting the pivot pin and the arm spindle when the over-the-top type cabinet door is closed and moved onto the vertical axial line in the initial stages of the opening motion of the cabinet door and then further away from the cabinet door relative to the vertical axial line in the subsequent stages of the opening motion of the cabinet door until the cabinet door is placed on the top wall of the cabinet.
Abstract:
A device for dampening the movement of a pivotally supported structural part, for example, a flap or closure within an automobile, comprises a pivot arm attached to the structural part, and a rack operatively connected to the pivot arm. A housing is rotatably supported upon a support surface or member, and a rotor is rotatably disposed within the housing along with a viscous fluid which tends to dampen rotary motion of the rotor. The rotor also comprises a pinion which is enmeshed with the rack, and the housing comprises a pair of guides for confining movement of the rack in a translational or rectilinear mode while maintaining the rack enmeshed with the rotor pinion. Consequently, when the flap or closure is either opened or closed, the flap or closure is moved in a dampened mode due to the movement of the pivot arm and the rack relative to the dampened rotor pinion. As a result of the rotary mounting of the housing, and the provision of the rack guides, the rack undergoes both rotary and translational movements while being maintained enmeshed with the rotor pinion.
Abstract:
A pivoting gear damper for use with a rotary damper includes a toothed gear rack movable between a first position and a second position corresponding to movements in first and second directions. A pivotal bracket is provided for rotation between first and second positions corresponding to movements of the gear rack in the first and second directions. The rotary damper has a toothed driven gear disposed on the pivotal bracket. One-way dampening means is disposed on the pivotal bracket for causing the toothed gear rack to be in meshed engagement with the toothed driven gear to produce a dampening force when the gear rack is moved in the first direction and for causing the toothed gear rack to be disengaged from the toothed driven gear to allow unrestricted motion when the gear rack is moved in the second direction. The one-way dampening means is comprised of a guide pin and a cam member.
Abstract:
A gear damper includes anti-ratcheting means for preventing disengagement between a gear of the damper and a mating gear rack when a sliding or rotating tray is moved or rotated in and out of a stationary housing. The gear damper further includes mounting means so as to permit the gear damper to move floatingly in a direction perpendicular to the gear rack as a toothed wheel gear follows the gear rack. As a result, the distance between the toothed gear of the damper and the gear rack is held substantially constant so as to eliminate ratcheting and gear skipping.