Abstract:
A solid stick composition for use on steel surfaces that are in sliding or rolling-sliding contact. The solid stick composition comprises a vinyl ester resin, for example, from about 20 to about 80 weight percent vinyl ester resin, a solid lubricant, for example from about 0 to about 80 weight percent lubricant, and optionally a friction modifier, for example from about 0 to about 40% weight percent friction modifier, or a combination of a solid lubricant and a friction modifier. The solid stick comprises at least one of the lubricant or the friction modifier. A method of controlling friction between a metal surface and a second metal surface by applying the solid stick composition to one or more than one of the metal surfaces is also disclosed as well as a method of reducing lateral force in a rail system comprising applying the solid stick composition onto a wheel or rail surface.
Abstract:
Grease for a slide bearing, which can suppress unusual noise attributable to a slip caused between a shaft and a bearing when a machine is stopped. In slide bearing grease 24 supplied to between a slide bearing 16 formed of a porous sintered alloy-made bushing having pores 30 impregnated with lubricating oil 31 and a shaft 22 inserted in the slide bearing 16 and supported to be slidingly rotatable in the circumferential direction, the slide bearing grease 24 employs base oil having dynamic viscosity of 10-70 mm2/s at 40° C. and exuding under a load of the shaft 22 to form an oil film 35 between the slide bearing 16 and the shaft 22.
Abstract:
An image-bearing member protecting agent including: a hydrophobic organic compound (A); an inorganic lubricant (B); and inorganic fine particles (C), wherein each of the inorganic fine particles (C) has a specific surface area of 2.0 m2/g to 6.5 m2/g.
Abstract:
In a slide member in which an overlay is provided on a slide receiving surface of a base member, the overlay is formed by attaching a mixed solid lubricant on the slide receiving surface of the base member. The mixed solid lubricant is made by mixing a large amount of hydrogen containing solid lubricant which contains a large amount of hydrogen, and a small amount of hydrogen containing solid lubricant which contains a smaller hydrogen amount than the large amount of hydrogen containing lubricant. Thereby, a lubricant absence region where the solid lubricant is absent in a thickness direction is formed on the slide receiving surface of the base member after sliding, and an oxidized portion where the base member is oxidized is formed in the lubricant absence region.
Abstract:
A threaded joint for steel tubes has a contact surface (30) including a threaded portion and a non-threaded metal-to-metal contact portion. The contact surface of at least one of a pin and a box of the joint is coated with a first plating layer (34) made of a Cu—Zn alloy or a Cu—Zn-M1 alloy (wherein M1 is at least one element selected from Sn, Bi, and In). An undercoat (32) of one or both of a Ni plating layer (32a) and a Cu plating layer (32b) and an overcoat of a Sn-M2 alloy plating layer (36) (wherein M2 is one or more elements selected from Bi, In, Ni, Zn, and Cu) may be formed below and above the first layer, respectively. A solid lubricating coating (38a) and a viscous liquid or semisolid lubricating coating (38b) may also be formed atop the plating layer as a lubricating coating (38).
Abstract:
According to one embodiment, a film of solid lubricant particles is applied to metal workpieces, which are then subjected to a controlled humid environment for predetermined times and temperatures. Following the exposure to humidity, the lubricated metal workpieces are heated for a hot forming operation. The humidification of the lubricated workpiece increases the adhesion of solid lubricant films to the metal workpieces, thereby improving the tribological performance of the workpieces during subsequent hot forming operations.
Abstract:
In an electrical machine having a roller bearing, whose inner ring is seated on the rotor shaft of the electrical machine, whose outer ring is seated in a housing and which is located in a closed area, the roller bearing is intended to be protected against electrical breakdowns. For this purpose, the area contains a liquid on an aqueous basis, whose level overhangs the external contour of the inner ring at its lowest point. The inner ring and the outer ring are therefore conductively connected and the voltage can be equalized between the rotor and the housing of the electrical machine, without any impediment and without breakdowns. In an application as a geared motor, the lubricant for the gearbox is also a liquid on an aqueous basis.
Abstract:
A solid lubricant formulation useful for lubricating the flanges of locomotive wheels, railcar wheels, rail tracks and in applications where it is desirable to reduce friction when metal contacts metal. The solid lubricant formulation including at least one non-polylactic acid-based polymeric carrier, at least one polylactic acid-based polymer, and at least one lubricant powder.
Abstract:
A protective agent for an image bearing member of an image forming apparatus. The protective agent is applied onto a surface of the image bearing member and includes a hydrophobic organic compound (A), an inorganic fine particle (B), and an inorganic lubricant (C).
Abstract:
An improved oil composition is disclosed. The oil composition includes a base oil comprising a hydrocarbon, the base oil having a base thermal conductivity. The oil composition also includes a first additive comprising a plurality of derivatized first additive nanoparticles dispersed within the base oil to form a modified oil having a modified thermal conductivity, wherein the modified thermal conductivity is greater than the base thermal conductivity. Alternately, an improved oil composition includes a base oil comprising a hydrocarbon and a first additive comprising a plurality of derivatized first additive nanoparticles dispersed within the base oil to form a modified oil comprising a stabilized suspension of the derivatized first additive nanoparticles in the base oil.