Abstract:
An imaging system comprises a first charge-coupled device (CCD), a second CCD, and a processor. The first CCD is configured to receive one or more light flashes, record a first set of data based on the light flashes, shift the first set of data in a first direction, read out the first set of data, and read out continuously. The second CCD is configured to receive the one or more light flashes, record a second set of data based on the light flashes, shift the second set of data in a second direction opposite to the first direction, read out the second set of data, and read out continuously. The processor, coupled to the first CCD and second CCD, is configured to determine a time and a location of the one or more light flashes based on the first set of data and the second set of data.
Abstract:
An apparatus and method for in vivo and ex vivo control, detection and measurement of radiation in therapy, diagnostics, and related applications accomplished through scintillating fiber detection. One example includes scintillating fibers placed along a delivery guide such as a catheter for measuring applied radiation levels during radiotherapy treatments, sensing locations of a radiation source, or providing feedback of sensed radiation. Another option is to place the fibers into a positioning device such as a balloon, or otherwise in the field of the radiation delivery. The scintillating fibers provide light output levels correlating to the levels of radiation striking the fibers and comparative measurement between fibers can be used for more extensive dose mapping. Adjustments to a radiation treatment may be made as needed based on actual and measured applied dosages as determined by the fiber detectors. Characteristics of a radiation source may also be measured using scintillating materials.
Abstract:
An efficient, large-area-detector and readout-system for combined sub-mm spatial imaging and time-of-flight spectrometry of fast and slow neutrons, as well as gamma-rays, capable of loss-free operation in mixed neutron-gamma fields of very high intensity.
Abstract:
A gamma vector camera is described for detecting and determining the energy spectrum of a gamma ray source and the direction to the gamma ray source. The gamma vector camera includes a detection system that records a track of a recoil electron produced by a Compton-scattering of an incident gamma ray emitted by the gamma ray source. A processor is configured to determine the energy and the direction of the recoil electron based on the track of the recoil electron recorded by the detection system, and to determine the energy spectrum of the gamma ray source and the direction to the gamma ray source based on the determined energies and directions of a plurality of recoil electrons produced by the Compton-scatterings of a respective plurality of incident gamma rays.
Abstract:
A detector module, in at least one embodiment, is disclosed for x-radiation or gamma radiation that includes one or more optical waveguide sections that are arranged next to one another in order to form one or more detector rows and are optically interconnected in serial fashion. The waveguide sections include one or more converter materials for converting incident x-radiation or gamma radiation into optical radiation and are designed in such a way that optical radiation of different wavelength is generated in respectively neighboring regions along the waveguide sections upon incidence of x-radiation or gamma radiation. The present detector module, in at least one embodiment, can be implemented cost effectively with a high number of detector rows, and is of very low weight.
Abstract:
A photon generating event capture system is configured to capture light photons. Image intensifiers are arranged to amplify light photons and sensors are arranged to capture the amplified light photons. A control system detects the amplification of light photons by the image intensifiers. Upon detecting amplification, the control system deactivates the image intensifiers to shutdown further light photon amplification and switches the sensors from a clear mode to an acquisition mode within a period of time less than a decay time of the image intensifiers. The locations and intensities of the amplified light photons are then captured and read out by the sensors. By operating the sensors in a clear mode prior to detecting amplification of light photons, noise recorded by the sensors prior to the detection of light photon amplification is either shifted out of the sensor prior to the photon generating event or is smeared across the sensor data. The effects of system noise can be reduced by detecting and removing this smeared sensor data.
Abstract:
The invention consists in structuring scintillation radiation detectors as Photonic Bandgap Crystals or 3D layers of thin filaments, thus enabling extremely high spatial resolutions and achieving virtual voxellation of the radiation detector without physical separating walls. The ability to precisely measure the recoil electron track in a Compton camera enables to assess the directions of the gamma rays hitting the detector and consequently dispensing with collimators that strongly reduce the intensity of radiation detected by gamma cameras. The invention enables great enhancements of the capabilities of gamma cameras, SPECT, PET, CT and DR machines as well as their use in Homeland Security applications. Methods of fabrication of such radiation detectors are described.
Abstract:
A portable nuclear material detector generally includes a scintillating fiber radiation sensor, a light detector, a conditioning circuit, a frequency shift keying (FSK) circuit, a fast Fourier transform (FFT) circuit, an electronic controller, an amplitude spectral addition circuit, and an output device. A high voltage direct current (HVDC) source is provided to excite the light detector, while a separate power supply may be provided to power the remaining components. Portability is facilitated by locating the components of the detector within a handheld-sized housing. When bombarded by gamma particles, the radiation sensor emits light, which is detected by the light detector and converted into electrical signals. These electrical signals are then conditioned and converted to spectral lines. The frequency of a give spectral line is associated with a particular radioactive isotope, while the cumulative amplitude of all spectral lines having a common frequency is indicative of the strength and location of the isotope. All or part of this information (identity, strength, direction, and distance) may be provided on the output device.
Abstract:
A detector module, in at least one embodiment, is disclosed for x-radiation or gamma radiation that includes one or more optical waveguide sections that are arranged next to one another in order to form one or more detector rows and are optically interconnected in serial fashion. The waveguide sections include one or more converter materials for converting incident x-radiation or gamma radiation into optical radiation and are designed in such a way that optical radiation of different wavelength is generated in respectively neighboring regions along the waveguide sections upon incidence of x-radiation or gamma radiation. The present detector module, in at least one embodiment, can be implemented cost effectively with a high number of detector rows, and is of very low weight.
Abstract:
The present invention is a directed to a non-pixelated scintillator array for a CT detector as well as an apparatus and method of manufacturing same. The scintillator array is comprised of a number of ceramic fibers or single crystal fibers that are aligned in parallel with respect to one another. As a result, the pack has very high dose efficiency. Furthermore, each fiber is designed to direct light out to a photodiode with very low scattering loss. The fiber size (cross-sectional diameter) may be controlled such that smaller fibers may be fabricated for higher resolution applications. Moreover, because the fiber size can be controlled to be consistent throughout the scintillator array and the fibers are aligned in parallel with one another, the scintillator array, as a whole, also is uniform. Therefore, precise alignment with the photodiode array or the collimator assembly is not necessary.