Abstract:
A method for preparing a lithographic printing plate comprising: exposing a lithographic printing plate precursor comprising: a support having a hydrophilic surface; a photosensitive layer containing a phthalocyanine pigment covered with a polymer having a group represented by the formula (I) or (II) as defined herein in its side chain and a hydrophobic binder polymer having an acid value of 0.3 meq/g or less; and a protective layer provided in this order; and removing the protective layer and an unexposed area of the photosensitive layer in a presence of a developer having pH of from 2 to 10 in an automatic processor equipped with a rubbing member.
Abstract:
A positive planographic printing plate precursor includes a support having disposed thereon a lower thermosensitive layer containing a water-insoluble but alkali-soluble polymer compound and an upper thermosensitive layer containing a water-insoluble but alkali-soluble polymer compound, with alkali-solubility increasing under heat, wherein (i) both the upper thermosensitive layer and the lower thermosensitive layer contain an IR absorbing dye, with the ratio of the IR absorbing dye concentration in the upper thermosensitive layer to the IR absorbing dye concentration in the lower thermosensitive layer is 1.6 to 10.0, and/or (ii) the upper thermosensitive layer and the lower thermosensitive layer contain different IR absorbing dyes, and/or (iii) at least one of the upper thermosensitive layer and the lower thermosensitive layer contains an IR absorbent having, in one molecule, at least two chromophoric groups that absorb IR light, with the chromophoric groups bonding to each other via a covalent bond.
Abstract:
A heat-sensitive lithographic printing plate precursor comprising a support having thereon two image-forming layers each containing a polymer insoluble in water and soluble in an aqueous alkaline solution, wherein an upper layer of the image-forming layers contains a copolymer including a monomer unit represented by formula (A) defined in the specification.
Abstract:
The present invention provides a lithographic printing plate precursor and a lithographic printing method using the lithographic printing plate precursor, which is capable of an image recording by infrared laser scanning and an on-press development and excellent in fine line reproducibility and press life while maintaining good on-press developing properties, the lithographic printing plate precursor comprising: a support; and an image recording layer capable of being removed by a printing ink and/or a fountain solution, in which the image recording layer comprises an infrared absorber and a graft polymer having a specific graft chain.
Abstract:
A positive planographic printing plate precursor includes a support having disposed thereon a lower thermosensitive layer containing a water-insoluble but alkali-soluble polymer compound and an upper thermosensitive layer containing a water-insoluble but alkali-soluble polymer compound, with alkali-solubility increasing under heat, wherein (i) both the upper thermosensitive layer and the lower thermosensitive layer contain an IR absorbing dye, with the ratio of the IR absorbing dye concentration in the upper thermosensitive layer to the IR absorbing dye concentration in the lower thermosensitive layer is 1.6 to 10.0, and/or (ii) the upper thermosensitive layer and the lower thermosensitive layer contain different IR absorbing dyes, and/or (iii) at least one of the upper thermosensitive layer and the lower thermosensitive layer contains an IR absorbent having, in one molecule, at least two chromophoric groups that absorb IR light, with the chromophoric groups bonding to each other via a covalent bond.
Abstract:
A coating fluid for printing plates which can be suitably used to make printing plates that permit images to be written in response to input digital data and that can be easily regenerated and reused. This coating fluid for printing plates comprises at least a carrier liquid, thermoplastic resin particles and an IR absorber, and the IR absorber has a decomposition starting temperature higher than the melt starting temperature of the thermoplastic resin particles.
Abstract:
A primer layer that includes a surface-tension modifier dispersed within a polymer binder is disposed between the imaging layer and the substrate of a lithographic printing member to inhibit the production of thermal degradation products that disrupt the oleophilicity of the exposed imaged areas, thereby improving print-making performance and efficiency. In addition, embodiments of the primer layer inhibit static charge buildup during production and during the print-making process.
Abstract:
The present invention provides an infrared-sensitive planographic printing plate precursor including: a support; a recording layer on one surface of the support, which recording layer contains a water-insoluble and alkali-soluble resin, an infrared absorber and a long-chain alkyl group-containing polymer, and is capable of forming an image by infrared irradiation; and a back coating layer on the other surface of the support, which back coating layer contains an organic polymer and has a thickness of 0.3 μm or more.
Abstract:
A hydrophilic substrate comprising: a hydrophilic layer; and a support, wherein the hydrophilic layer contains a hydrophilic particle having a surface area of from 1 to 1,000 m2/g.
Abstract:
Thermally imageable multilayer imageable elements useful as lithographic printing plate precursors that have good solvent resistance are disclosed. The underlayer of the imageable element comprises an acidic copolymer that comprises, in polymerized form, about 10 mol % to about 75 mol % of one or more monomers of the formula: CH2═CH(R1)-Z-X—NH—CO—NH—C6H3—(R2)(CO2H); in which: R1 is H or CH3; R2 is H or OH; Z is —C6H4— or —C(O) —Y—; Y is —O— or —NH—; and X is selected from —C(CH3)2—, —CH(CH3)— and —(CH2)n—, in which n is an integer from 1 to 12.