Abstract:
A connector for use in a contaminated environment is provided. The connector includes first and second couplers which are coupled together to produce a fluid path through the connector. Prior to coupling of the first and second couplers, the first and second couplers include plastic caps for minimizing the contaminants on the couplers. Elastomer face seals which can be contaminated are mated against one another compressing to expel contaminants and trapping contaminants between the elastomer face seals. The elastomer face seals are captured between a pair of O-rings. Parts of the elastomer face seals are flushed with fluid as the connector is coupled to further reduce contamination. All internal passages and the elastomer face seals are treated with an antimicrobial compound. The connector vents to the atmosphere during engagement of the first and second couplers such that the connector can operate at a higher pressure with reduced engagement force.
Abstract:
An aseptic coupling device includes a first state in which fluid does not flow through the aseptic coupling device. In addition, the aseptic coupling device includes a second state in which fluid does flow through the aseptic coupling device. The aseptic coupling device can be moved from first, second, and third states to control the flow of fluid through the aseptic coupling device.
Abstract:
A sterile connector assembly for mounting on a fluid system includes a first connector and a second connector. The first connector includes a stem defining a fluid passage therethrough, a first housing surrounding the stem and defining a first aperture, and a first valve disposed over the first aperture. The second connector includes a second housing configured to matingly engage the first housing. The second housing defines a second aperture and defines a seal structure. The seal structure is configured to engage the stem. The second connector also includes a second valve disposed over the second aperture. The second valve is configured to engage the first valve when the first housing engages the second housing.
Abstract:
A gasket connector assembly and method of creating a connection is described. The gasket includes a ring portion having a thickness suitable for creating a seal when compressed between two connector fitting ends, and at least one appendage pair, where each appendage of the at least one appendage pair includes an extension for engaging a reciprocally shaped receiving component on a connector fitting end to create an at least temporarily secured attachment of the gasket to the end of the connector fitting prior to creation of a seal between two connector fitting ends. The connector assembly includes a connector fitting having at least one receiving component on an end of the connector fitting and a gasket having at least one appendage, where the at least one appendage of the gasket engages the at least one receiving component to create an at least temporary secured attachment of the gasket to the connector fitting end.
Abstract:
A method and a device are provided for contamination-free and/or sterile sealing between two interconnectable connecting means having opposing openings. Interconnection allows transfer of a fluid between the openings. Sealing elements are arranged on the connecting means around the openings, and protective films are provided, covering the sealing elements and the openings and adapted to be removed in the final interconnection. The sealing elements are each provided with at least one recess which extends wholly or partly around the associated opening and receives a gas. In use the sealing elements are moved into engagement with each other, interleaved with the protective films, to reduce the volume of the recesses and, thus, increase the pressure of the gas therein. During removal of the protective films, the gas flows out of the recesses to the environment to prevent penetration of contamination into the openings.
Abstract:
A first fluid connector is provided for selective interconnection to and fluid transfer with a second fluid connector. The first connector comprises a fluid passageway, an internal member and an outer collar supportably disposed about the internal member for selective advancement and retraction relative thereto. At least a portion of the fluid passageway may extend through the internal member. The outer collar may be selectively retracted to facilitate cleaning of the internal member. In some embodiments, the outer collar and internal member may be disposed so that a distal portion of the internal member is substantially flush with or a distal portion of internal member projects beyond a distal end of the outer collar when the outer collar is in a retracted position relative thereto. To facilitate cleaning, a distal end or distal portion of the internal member may be substantially closed when the first and second connectors are disconnected. The second connector may be adapted to facilitate fluid interconnection with the first connector, and may also present a cleanable distal end when disconnected.
Abstract:
A composite tube includes at least two linings, wherein the first lining is an inert lining and wherein the second lining is placed radially outside of the first lining. A technical goal is to make available a composite tube, which provides an inert conduit for the transported medium and which, upon bending, does not prematurely kink itself. This technical goal is achieved in that a third deformable lining is provided and in that the third lining is placed radially outside of the first lining and is bound to the intervening second lining.
Abstract:
A connector apparatus designed for use in a bioprocessing assembly, and a method for coupling a piece of bioprocessing equipment to a media source in a sterilized environment. The connector apparatus includes a coupler including an end and at least one outlet, and a connector valve connectable at a first end to a fluid source, the connector valve including a valve member, the valve member being partially disposed within the coupler. The connector apparatus further includes a flow passage being actuatable from a closed configuration to an open configuration when the coupler and the connector valve are engaged, as well as being actuatable from an open configuration to a closed configuration. A clip member attached to the coupler allows the valve member to be moved from the closed configuration to the open configuration, and from the open configuration to the closed configuration.
Abstract:
A connector assembly and a fluid system or device comprises a connector assembly which includes first and second fittings, each fitting having an aperture, a first cap, and a stem disposed in the aperture of the first fitting. In various embodiments of the invention, the connector assembly further comprises a socket cooperatively arranged with one of the first and second fittings and at least one resilient sealing member. A method for making a connection includes removing a cap, mating first and second fittings, removing a stripout layer, and establishing a fluid flowpath through the first and second fittings.
Abstract:
A connector or a connector assembly comprises a fitting, a resilient sealing member, a plurality of protrusions, and a removable stripout layer. The fitting includes a socket. The protrusions extend from the fitting and are connectable to a mating connector. The resilient sealing layer, which is disposed in the socket of the fitting, includes a hollow body having opposite open ends and an internal passage extending between the open ends. The removable stripout layer is movable between a first position in which the stripout layer overlies an end of the resilient sealing member and a second position in which the stripout layer is removed from the end of the resilient sealing member.