Abstract:
A variable-frequency drive that includes a DC power supply bus with a positive line and a negative line, and an inverter module powered by the DC bus for supplying a variable voltage to an electric load. The inverter includes a first DC/DC converter including output terminals connected in series on the positive line of the DC bus, a second DC/DC converter including input terminals connected between the positive line and the negative line of the DC bus, a filtering capacitor connected in parallel to the input terminals of the first converter and to the first output terminals of the second converter, and an electric power storage module connected in parallel to the second output terminals of the second converter.
Abstract:
When a DC/DC converter switches between a primary voltage control mode, a secondary voltage control mode, and a current limiting mode as operation modes, an I-term resetting processor outputs an I term depending on the duty ratio in the operation mode before being switched to a PID processor. The PID processor performs a PID control process based on the input I term. A drive duty ratio setter outputs a drive duty ratio immediately after the control mode switching, which is substantially equal to the duty ratio in the operation mode before being switched. As a result, the duty ratios in the operation mode before being switched and the operation mode after being switched are made continuous with respect to each other.
Abstract:
A motor controller for an axial-gap motor permits a reduced size of the entire system of including a drive circuit and a power source of the motor, reduced cost, and higher reliability to be achieved by controlling the energization mode of the motor. The motor controller has a torque command determiner which inputs a first DC voltage to a first inverter at least either when a rotor is at a halt or when the number of revolutions of the rotor is a predetermined number of revolutions or less, supplies a field axis current for changing the magnetic flux of a field of the rotor to a first stator from the first inverter such that the amount of energization is temporally changed, converts an induced voltage developed in a second stator by the supplied field axis current into a second DC voltage by a second inverter, and outputs the second DC voltage, thereby charging a second battery.
Abstract:
A three-phase regenerative drive (20) is operated based upon power from a single-phase AC source (12) and power from a DC source (14). The single-phase AC input power and the DC input power are converted to DC voltage on a DC bus (24) by a three-phase converter (22). DC power is provided from the DC bus (24) to a three-phase inverter having outputs connected to a motor (34). A controller (44) controls operation of the three-phase converter (22) based upon contribution factors of the AC and DC sources (12, 14) during motoring and regeneration. The controller (44) also controls an AC component of current from the DC source to reduce ripple current on the DC bus (24).
Abstract:
A variable-frequency drive that includes a DC power supply bus with a positive line and a negative line, and an inverter module powered by the DC bus for supplying a variable voltage to an electric load. The inverter includes a first DC/DC converter including output terminals connected in series on the positive line of the DC bus, a second DC/DC converter including input terminals connected between the positive line and the negative line of the DC bus, a filtering capacitor connected in parallel to the input terminals of the first converter and to the first output terminals of the second converter, and an electric power storage module connected in parallel to the second output terminals of the second converter.
Abstract:
An example power management arrangement includes a motor controller configured to communicate power to a motor drive bridge to drive a motor. The motor controller is configurable to selectively receive power from each of a first power supply and a second power supply. The voltage of the power from the first power supply is different than a voltage of the power from the second power supply. An example power adjusting method includes receiving power at a motor controller, adjusting a voltage of the received power using the motor controller, communicating the power with the adjusted voltage from the motor controller to a motor drive bridge to drive a motor.
Abstract:
Based on rotation information of a synchronous machine detected by a rotation information detector, a controller causes a converter to boost a charge voltage of a capacitor so as to be higher than an induced voltage generated by the synchronous machine at a time of shifting to a coasting operation, maintains the charge voltage during the coasting operation, and performs weak field control so that the induced voltage generated by the synchronous machine becomes lower than a DC voltage at the time of shifting from the coasting operation to a power running operation or to a regenerative operation.
Abstract:
An electric motor control device includes a power supply unit that supplies power to a three-phase electric motor; a three-phase current sensor that individually detects three respective phase currents of the three-phase electric motor; a summing unit that calculates a three-phase sum by adding the three phase currents detected by the three-phase current sensor; a detected current correction unit that calculates correction amounts for at least two of the three phase currents based on a phase and an amplitude of the three-phase sum and then corrects phase current detection values by the calculated correction amounts; and a motor control unit that controls a power supply by the power supply unit to the three-phase electric motor by feedback control based on the three phase currents after correction by the detected current correction unit and on target currents.
Abstract:
A power supply system includes a main power storage device and a plurality of sub power storage devices. A converter is connected to selected one of the sub power storage devices to convert voltage between the selected sub power storage device and an electric power feeding line bidirectionally. When a request for switching the selected sub power storage device in use is generated, upper limits on electric power input/output to/from the selected sub power storage device are continuously varied. Thus, discontinuous variation of electric power input/output to/from the power supply system during the process for switching the selected sub power storage device can be avoided. Consequently, sudden change in a behavior of an electrically powered vehicle can be avoided.
Abstract:
There is provided a controller for a steering device that makes it possible to prevent sudden ceasing of steering assisting power by effectively utilizing an auxiliary power source. An electric power steering device that generates steering assist force by a motor includes a battery for supplying electric power to the motor, an auxiliary power source that supplies the motor with electric power, and a control circuit for controlling a power supply to the motor. In the event of a breakdown of the battery, the control circuit adjusts a power supply to the motor from the auxiliary power source according to an amount of energy remaining in the auxiliary power source so as to reduce steering assist force.